5 research outputs found

    Generation and efficacy assessment of a chimeric antigen E2-CD154 as a marker Classical Swine Fever Virus subunit vaccine produced in HEK 293 and CHO K1 mammalian cells

    Get PDF
    The E2 glycoprotein is the major antigen that induces neutralizing and protective antibodies in CSFV infected pigs, thus a marker vaccine based on this antigen appears to be the most promising alternative to induce a protective immune response against CSFV. However, the structural characteristics of this protein state the necessity to produce glycoprotein E2 in more complex expression systems such as mammalian cells. In this study, we use a lentivirus-based gene delivery system to establish a stable recombinant HEK 293 and CHO K1 cell line for the expression of E2 fused to porcine CD154 as immunostimulatory molecule. In a first experiment, E2his and E2-CD154 were compared in an immunization trial. The average antibody titers in E2his immunized pigs was in the range of 30-40% of blocking and the average antibody titers for E2-CD154 are above 40% at day 14, meaning that the chimeric antigen is able to raise antibodies at positive levels in a shorter time. Additionally, the blocking rate of E2his vaccinated group in ELISA ranged between 66-88% and in the E2-CD154- vaccinated groups ranged between 86-92%, one week after booster immunization. The NPLA antibody titers also increased greatly. Later on, the protective capacity of purified E2-CD154 glycoprotein was demonstrated in a challenge experiment in pigs using a biphasic immunization schedule with 25 and 50 ÎŒg. The immunized animals developed neutralizing antibodies that were protective when the animals were faced to a challenge with 105 LD50 of ‘‘Margarita’’ CSFV highly pathogenic strain. No clinical signs of the disease were detected in the vaccinated pigs. Unvaccinated pigs in the control group exhibited symptoms of CSF at 3–4 days after challenge and were euthanized from 7–9 days when the pigs became moribund. These results indicate that E2-CD154 produced in recombinant HEK 293 and CHOK1cell line is a high quality candidate for the development of a safe and effective CSFV subunit vaccine. In the next steps, pilot and production scale, E2-CD154 expression levels should be increased in 10 to 50 fold, arriving to a very attractive productive platform for an implementation of a commercial subunit vaccine against CSF

    PorvacÂź Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus

    No full text
    Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac¼ vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac¼ subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac¼, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines

    Porvac<sup>Âź</sup> Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus

    No full text
    Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac¼ vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac¼ subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac¼, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines

    Immunogenicity of E2CD154 Subunit Vaccine Candidate against Classical Swine Fever in Piglets with Different Levels of Maternally Derived Antibodies

    No full text
    E2CD154 is a novel subunit vaccine candidate against classical swine fever virus (CSFV). It contains the E2 envelope protein from CSFV fused to the porcine CD154 molecule formulated in the oil adjuvant MontanideTM ISA50 V2. Previous works evidenced the safety and immunogenicity of this candidate. Here, two other important parameters related to vaccine efficacy were assessed. First, the existence of high maternally derived antibody (MDA) titers in piglets born to sows vaccinated with E2CD154 was demonstrated. These MDA titers remained above 1:200 during the first seven weeks of life. To assess whether the titers interfere with active vaccination, 79 piglets from sows immunized with either E2CD154 or a modified live vaccine were vaccinated with E2CD154 following a 0&ndash;21-day biphasic schedule. Animals immunized at either 15, 21, or 33 days of age responded to vaccination by eliciting protective neutralizing antibody (NAb) titers higher than 1:600, with a geometric mean of 1:4335, one week after the booster. Those protective levels of NAb were sustained up to six months of age. No vaccination-related adverse effects were described. As a conclusion, E2CD154 is able to induce protective NAb in piglets with different MDA levels and at different days of age
    corecore