7 research outputs found

    e-Glass: A Wearable System for Real-Time Detection of Epileptic Seizures

    Get PDF
    Today, epilepsy is one of the most common chronic diseases affecting more than 65 million people worldwide and is ranked number four after migraine, Alzheimer’s disease, and stroke. Despite the recent advances in anti-epileptic drugs, one-third of the epileptic patients continue to have seizures. More importantly, epilepsy-related causes of death account for 40% of mortality in high-risk patients. However, no reliable wearable device currently exists for real-time epileptic seizure detection. In this paper, we propose e-Glass, a wearable system based on four electroencephalogram (EEG) electrodes for the detection of epileptic seizures. Based on an early warning from e-Glass, it is possible to notify caregivers for rescue to avoid epilepsy-related death due to the underlying neurological disorders, sudden unexpected death in epilepsy, or accidents during seizures. We demonstrate the performance of our system using the Physionet.org CHB-MIT Scalp EEG database for epileptic children. Our experimental evaluation demonstrates that our system reaches a sensitivity of 93.80% and a specificity of 93.37%, allowing for 2.71 days of operation on a single battery charge

    Real-time classification technique for early detection and prevention of myocardial infarction on wearable devices

    Get PDF
    Continuous monitoring of patients suffering from cardiovascular diseases and, in particular, myocardial infarction (MI) places a considerable burden on health-care systems and government budgets. The rise of wearable devices alleviates this burden, allowing for long-term patient monitoring in ambulatory settings. One of the major challenges in this area is to design ultra-low energy wearable devices for long-term monitoring of patients’ vital signs. In this work, we present a real-time event-driven classification technique, based on support vector machines (SVM) and statistical outlier detection. The main goal of this technique is to maintain a high classification accuracy while reducing the complexity of the classification algorithm. This technique leads to a reduction in energy consumption and thus battery lifetime extension. We validate our approach on a well-established and complete myocardial infarction (MI) database (Physiobank, PTB Diagnostic ECG database [1]). Our experimental evaluation demonstrates that our real-time classification scheme outperforms the existing approaches in terms of energy consumption and battery lifetime by a factor of 3, while maintaining the classification accuracy at a medically-acceptable level of 90%

    Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems

    Get PDF
    A considerable portion of government health-care spending is allocated to the continuous monitoring of patients suffering from cardiovascular diseases, particularly myocardial infarction (MI). Wearable devices present a cost-effective means of monitoring patients’ vital signs in ambulatory settings. A major challenge is to design such ultra-low energy devices for long-term patient monitoring. In this paper, we present a real-time event-driven classification technique based on the random forest classification scheme, which uses a confidence-related decision-making process. The main goal of this technique is to maintain a high classification accuracy while reducing the complexity of the classification algorithm. We validate our approach on a well-established and complete MI database (Physiobank, PTB Diagnostic ECG database [1]). Our experimental evaluation demonstrates that our real-time classification scheme outperforms the existing approaches in terms of energy consumption and battery lifetime by a factor of 2.60, with no classification quality loss

    Hierarchical Cardiac-Rhythm Classification Based on Electrocardiogram Morphology

    Get PDF
    Atrial Fibrillation (AF) is a type of cardiac arrhythmia that significantly increases the risk of stroke and heart failure. In general, in the case of patients affected by AF, their electrocardiogram (ECG) shows a typical pattern of irregular RR intervals and abnormal P waves. However, discriminating AF from a normal sinus rhythm or from other types of rhythms remains a challenging problem today. Methods: We analyze the database of PhysioNet/Computing in Cardiology Challenge 2017 to validate our heart rhythm classification technique. The database contains short-term ECG recordings, labelled as normal sinus rhythm, AF, other types of rhythm, and noise. We extract different morphology-based features of ECG signals, and we design a multiclass classifier based on error-correcting output codes, along with a random forest classifier for binary decision making. Results: We test the performance of our classifiers based on the F1 score of each class and the average F1 score of all the classes. The final F1 score obtained on the hidden test set of challenge is 80%. Conclusions: Our results show that our classifier is robust and that it is able to discriminate AF from normal sinus, other rhythms, and noise, based on the morphology of the ECG signal

    Non-Linear EEG Features for Odor Pleasantness Recognition

    No full text
    Since olfactory sense is gaining ground in multimedia applications, it is important to understand the way odor pleasantness is perceived. Although several studies have explored the way odor pleasantness perception influences the power spectral density of the electroencephalography (EEG) in various brain regions, there are still no studies that investigate the way odor pleasantness perception affects the non-linear temporal variations of EEG. In this study two non-linear metrics are used, namely permutation entropy, and dimension of minimal covers, to explore the possibility of recognizing odor pleasantness perception from the non-linear properties of EEG signals. The results reveal that it is possible to discriminate between pleasant and unpleasant odors from the EEG nonlinear properties, using a Linear Discriminant Analysis classifier with cross-validation

    A wearable system for real-time detection of epileptic seizures

    No full text
    A wearable system for epileptic seizure detection, comprising an eyeglasses frame, with a left arm and a right arm configured to rest over the ears of an intended person wearing the eyeglasses, a first pair of electrodes located in the left arm, and a second pair of electrodes located in the right arm, the first pair of electrodes and the second pair of electrodes arranged such to be in contact with the skull of the intended person wearing the eyeglasses, and an EEG signal acquiring system integral to the left and right arms, connected to measuring outputs of the respective first pair and second pair of electrodes

    Personalized seizure signature : An interpretable approach to false alarm reduction for long-term epileptic seizure detection

    Get PDF
    Objective: Long-term automatic detection of focal seizures remains one of the major challenges in epilepsy due to the unacceptably high number of false alarms from state-of-the-art methods. Our aim was to investigate to what extent a new patient-specific approach based on similarly occurring morphological electroencephalographic (EEG) signal patterns could be used to distinguish seizures from nonseizure events, as well as to estimate its maximum performance. Methods: We evaluated our approach on >5500 h of long-term EEG recordings using two public datasets: the PhysioNet.org Children’s Hospital Boston–Massachusetts Institute of Technology (CHB-MIT) Scalp EEG database and the EPILEPSIAE European epilepsy database. We visually identified a set of similarly occurring morphological patterns (seizure signature) seen simultaneously over two different EEG channels, and within two randomly selected seizures from each individual. The same seizure signature was then searched for in the entire recording from the same patient using dynamic time warping (DTW) as a similarity metric, with a threshold set to reflect the maximum sensitivity our algorithm could achieve without false alarm. Results: At a DTW threshold providing no false alarm during the entire recordings, the mean seizure detection sensitivity across patients was 84%, including 96% for the CHB-MIT database and 74% for the European epilepsy database. A 100% sensitivity was reached in 50% of patients, including 79% from the CHB-MIT database and 27% from the European epilepsy database. The median latency from seizure onset to its detection was 17 ± 10 s, with 84% of seizures being detected within 40 s. Significance: Personalized EEG signature combined with DTW appears to be a promising method to detect ictal events from a limited number of EEG channels with high sensitivity despite low rate of false alarms, high degree of interpretability, and low computational complexity, compatible with its future use in wearable devices
    corecore