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Abstract—Continuous monitoring of patients suffering from
cardiovascular diseases and, in particular, myocardial infarction
(MI) places a considerable burden on health-care systems and
government budgets. The rise of wearable devices alleviates this
burden, allowing for long-term patient monitoring in ambulatory
settings. One of the major challenges in this area is to design ultra-
low energy wearable devices for long-term monitoring of patients’
vital signs. In this work, we present a real-time event-driven
classification technique, based on support vector machines (SVM)
and statistical outlier detection. The main goal of this technique
is to maintain a high classification accuracy while reducing
the complexity of the classification algorithm. This technique
leads to a reduction in energy consumption and thus battery
lifetime extension. We validate our approach on a well-established
and complete myocardial infarction (MI) database (Physiobank,
PTB Diagnostic ECG database [1]). Our experimental evaluation
demonstrates that our real-time classification scheme outperforms
the existing approaches in terms of energy consumption and bat-
tery lifetime by a factor of 3, while maintaining the classification
accuracy at a medically-acceptable level of 90%.

I. INTRODUCTION AND RELATED WORK

Cardiovascular diseases and, in particular myocardial infarc-
tion (MI), represent one of the leading causes of death nowadays.
MI, also commonly known as heart attack, is a worldwide life-
threatening condition, affecting more than 700, 000 people only
in the USA [2]. The annual costs of US hospitalizations due to
MI in 2010 were estimated at over 45 billion US dollars [3].

MI occurs when one of the coronary arteries that supply the
oxygenated blood to the heart muscle becomes blocked. This
situation occurs due to a build-up of fatty deposits (plaques)
that gradually form in one of these arteries. Upon rupture, these
plaques release thrombogenic contents that trigger the blood
clot to form. The blood clot can completely block an artery
resulting in myocardial ischaemia, a diminished blood supply
to the part of the heart that was getting supplied by the blocked
artery. Without oxygen, muscle cells of this part of the heart
begin dying, resulting in a heart attack. The histological cell
death begins in as little as 20 minutes [4], [5]. Once MI begins,
the goal is to get a person into treatment in less than 90 minutes.
If the time between hospital arrival and performance of the
treatment, the so-called door-to-balloon time, is longer than 2
hours, the rate of mortality increases significantly by 41–62%
[6]. Moreover, the complete necrosis of myocardial cells at risk
typically requires 2 to 4 hours [4]. Thus, prolongation of the
period of ischaemia without treatment will have irreversible
consequences, i.e., death of the affected cells.

In addition to the previously discussed risks of MI, patients
who have already had a heart attack are at increased risk of
recurrent infarctions with an annual death rate that is six times
higher than in people of the same age who have not had a
heart attack [7]. Hence, adequate care should be provided to
these patients. Long-term monitoring of these patients has been
usually performed in hospitals by bulky medically-approved
devices. The major challenges of these devices are their high

energy consumption and lack of portability, which makes
them inconvenient to be used for ambulatory and home-based
monitoring.

The need for regular check-ups of these patients can be
alleviated through means of wearable devices that can be used
autonomously by patients. These devices provide the possibility
of replacing the functionality of hospital equipment with new
portable low-cost devices that offer mobility, and long-term
patient monitoring on a daily basis. This allows clinicians to
detect early symptoms of potential cardiac irregularities and
prevent further patient’s state deterioration. Subsequently, based
on these parameters, care can be provided to patients in the
ambulatory settings, which reduces the hospitalization rate
and costs. Recent advances in machine learning enable the
estimation of these parameters from physiological signals.

Existing machine learning algorithms for early detection and
prevention of MI that achieve high classification accuracy are
too complex to be implemented on wearable devices for real-
time monitoring (K-nearest neighbours, see [8]). Furthermore,
these algorithms have to meet stringent energy constraints
to be used for long-term patient monitoring. Therefore, the
classification algorithms running on a battery-powered wearable
device should be highly optimized, which promotes the need
for a paradigm shift in the classifier design. The event-driven
computing paradigm presents a promising solution to cope with
the computational complexity of learning algorithms and, in
turn, to substantially reduce the energy consumption.

The need to reduce the energy consumption of wearable
devices has given rise to a plethora of studies. In [9], a real-time
classification scheme for automatic detection of abnormal heart-
beats targeting embedded and resource-constrained Wireless
Body Sensor Nodes (WBSNs) has been proposed. This scheme
also incorporates an advanced digital signal processing block
that is activated just when abnormal beats are detected, which
considerably decreases the computational requirements and the
energy consumption. First, and from a medical reliability point
of view, the authors do not investigate the confidence interval
of obtained results, which is an important parameter in medical
applications. Secondly, and from an energy-efficiency point
of view, their work focuses on a context where pathological
heartbeats occur less frequently than normal ones. Therefore,
in case of many pathological heartbeats happening one after
another, the advanced digital signal processing block will be
successively invoked, which will increase the computational
complexity and energy consumption. In [8], the authors report
a high accuracy in classifying normal and MI ECG beats from
47 features, which is not an appropriate classification scheme
for wearable devices due to their stringent energy budgets, as
we show in Section III.

In this work we target early detection and prevention of
myocardial infarction through means of ultra-low energy wear-
able devices. We propose a hierarchical real-time event-driven
classification technique that reduces the energy consumption,
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while still maintaining the classification accuracy at a medically-
acceptable level of 90%, based on the internal discussion with
medical experts. The main contributions of this paper are:

1) Real-time early detection and prevention of myocar-
dial infarction using an event-driven classification
technique that uses a two-level classifier, in which
the first-level classifier is computationally efficient
and cannot provide a medically-acceptable accuracy,
whereas the second-level can provide it, but it is
computationally more complex.

2) Validation on myocardial infarction (MI) database
(Physiobank - PTB Diagnostic ECG database [1]).

3) Porting of our classification technique on a wearable
platform and evaluation of energy consumption and
battery lifetime.

II. REAL-TIME EVENT-DRIVEN TECHNIQUE

In this section, we propose a real-time event-driven learning
technique, based on support vector machines (SVM) [10] and
statistical outlier removal [11]. The goal is to maintain high
accuracy while reducing the expected complexity. Reducing
computational complexity, in turn, results in a longer battery
lifetime, which is an important factor for wearable devices.
Therefore, we adopt a real-time event-driven computing scheme
for early detection and prevention of MI. In an event-driven
computing paradigm it is the occurrence of an event rather than
the passing of time, which decides when a particular action
should be taken [12]. The event-driven schemes perform the
most computationally expensive processing only when it is
necessary.

The overall flow of our approach is shown in Fig. 1. Our
proposed classification technique has 2 main phases: the offline
phase that is discussed in Section II-A, and the online phase
discussed in Section II-B. The offline phase consists of 2 stages:
the training phase and the phase in which we fit distributions
to misclassified training examples.

A. Offline phase of our real-time event-driven classifier
An event-driven classification scheme relies on the fact

that most of the time we can make confident decisions based
on only a few features and only rarely we need to compute
all the features. Therefore, the basic idea here is to use a
two-level classifier. The first-level classifier only considers a
limited number of features and, therefore, is computationally
efficient, but cannot provide medically-acceptable results with
90% accuracy. On the contrary, the second-level classifier can
provide a medically-acceptable accuracy, but is computationally
complex. In our real-time event-driven classification technique,
the second-level classifier is activated only if the first-level
classifier is unable to classify the sample data with the required
confidence.

We make two main observations with respect to our real-
time event-driven classification scheme: (1) The overall classi-
fication complexity is mainly determined by the complexity of
the first-level classifier, since the majority of the data samples
can be classified based on the first-level classifier relying on
a limited number of features. (2) The overall classification
accuracy is similar to that of the second-level classifier since
when the first-level classifier cannot make confident decisions,
the second-level classification is invoked.

Our real-time event-driven classifier incorporates two soft-
margin SVMs, and the dimensionality of features is different.
In the offline learning phase in Fig. 1, we use the matrix of
features X and the vector of labels y to obtain the classifier
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Fig. 1: Flowchart of our two-level classification technique
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ω
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(2)
n , b(2) for the second-level one. The next step

is to find the misclassified samples for both classes. These
samples are represented by normal distributions with parameters
(μ+,Σ+) and (μ−,Σ−). Parameters (μ+,Σ+), (μ−,Σ−)
represent the mean vector and the covariance matrix of
misclassified samples that correspond to label y = 1, y = −1,
respectively. As shown in [11], given an n-dimensional feature
vector z1, with the mean vector μ and covariance matrix Σ,
the scalar random variable U(z1) that is defined as:

U(z1) = (z1 − μ)TΣ−1(z1 − μ),
follows a χ2 distribution with n degrees of freedom, where n
is the size of feature vector z1 [11]. This metric will be used in
the online phase of our technique to determine if it is required
to invoke the second-level classifier. Based on the selected
confidence level and the number of features in the first-level
classifier, we calculate the critical value χ2

c . This critical value
determines the probability of calling the second-level classifier.

B. Online phase of our real-time event-driven classifier
The overall flow of the online phase of our proposed

two-level classifier is shown in Fig. 2. When classifying new
examples, depending on the required confidence level, either the
first-level classifier with a reduced set of features, or the second-
level classifier that uses the entire set of available features
will be invoked. Given a feature vector z with features zi for
i = 1, . . . , n, we first calculate the output of the first-level
classifier. This is done simply by evaluating the sign function:

sign

(
m∑
i=1

ω
(1)
i zi + b(1)

)
. (1)

Note that the first-level classifier only uses the first m features.
Based on the result that we obtain from Eq. (1), we calculate
U(z) as follows:

U(z) =

⎧⎨
⎩
(z − μ+)TΣ−1

+ (z − μ+), if sign(y) < 0

(z − μ−)TΣ−1
− (z − μ−), if sign(y) > 0

The classifier that is going to be used for classification
depends on the value of χ2

c calculated in the offline phase and
U(z),

Classifier =

{
First-level classifier, if U(z) ≥ χ2

c

Second-level classifier, otherwise.
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Fig. 2: Flowchart of online phase of our two-level classifier

If U(z) < χ2
c , the output of the second-level classifier is

calculated by evaluating the following function:

sign

(
n∑

i=1

ω
(2)
i zi + b(2)

)
,

where n is the number of all available features.

C. Complexity analysis
The expected complexity (the mathematical expectation

denoted by E(·)) of our approach is computed as follows:

E(c) = pc1 + (1− p)c2. (2)

where c1 is the complexity of the first-level classifier and
U(z), and c2 is the complexity of computing all the features.
The parameter p is defined as the probability that the first-
level classifier will be sufficient. This probability p depends
on the value χ2

c , as the first-level classifier will be sufficient
for those testing samples for which U(z) ≥ χ2

c . Namely, an
increase in the value of χ2

c leads to an increase in classification
accuracy, as the second-level classifier is then invoked more
frequently. However, at some point there is no improvement
in the classification accuracy, as the second-level classifier is
always invoked. On the other hand, this situation also increases
the computational complexity. In addition, as we show in
Section III, the energy consumption increases as well, which
reduces the battery lifetime of wearable devices.

III. EXPERIMENTAL SETUP

In this section, we use the ECG signals from Physiobank
(PTB Diagnostic ECG database) open access database [1] for
validating our technique. Signals from 52 healthy subjects and
52 patients who already had an MI are used for classifying
healthy and MI electrocardiogram (ECG) beats.

A. Preprocessing
As a first step, we extensively filter the ECG signals

to remove the noise. Namely, the morphological filtering
[13] is used for ECG baseline wander removal. A 32nd-
order zero-phase FIR band-pass filter with cut-off frequencies
f1 = 0.05Hz and f2 = 40Hz is applied for high-frequency
noise and artefact removal. The R-peaks of the ECG signals
are detected using Pan-Tompkin’s algorithm [14]. Similar to
[8], after detecting the R-peak, 250 samples to the left and 400
samples to the right of R-peak are used for segmenting each
ECG beat. Each of these ECG beats is further decomposed using
a discrete wavelet transform (DWT) down to level four, resulting
in eight coefficients. DWT was performed using Daubechies 6
(db6) wavelet basis function. We use the same set of features
extracted from signals coming from Lead 11 as in [8]. Finally,
the forward feature selection procedure [15] is used to find the
most informative ones.
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Fig. 3: Accuracy of our technique. Each curve in this figure
shows the accuracy obtained on the testing fold, while the
classifier has been trained on the remaining four folds. The
figure legend indicates the fold used for testing the model.

B. Target platform
We use the SmartCardia INYU device [16], which is a

wearable device used for health monitoring, to evaluate our
technique. This device acquires user’s ECG signal from an
ECG sensor with the sampling frequency that ranges from
125 Hz up to 16 KHz, and with up to 16-bit resolution.
This SmartCardia device has a standard 710 mAh battery.
The entire processing is done on an ultra-low power 32-bit
microcontroller STM32L151 [17] with an ARM R© Cortex R©–
M3 that can operate at a maximum frequency of 32 MHz. This
device has 48 KB RAM, 384 KB Flash and several analog
peripherals including a 12-bit ADC. More details about this
device could be found in [18].

C. Accuracy and computational complexity
In this subsection, we calculate the classification accuracy

along with the computational complexity of our classification
technique. As our dataset is balanced, the classification accuracy
is a valid metric for classifier performance evaluation, and it is
defined as follows:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
,

where tp, tn, fp, fn represent the number of true positive,
true negative, false positive, and false negative, respectively.
It is derived from a five-fold cross-validation process, with
samples of different classes randomly divided across folds.
Out of the five folds, a single fold is retained for testing the
model, and the remaining four are used as training data. For
instance, Fold1 curve in Fig. 3 corresponds to testing based
on Fold1 and training using the remaining four folds. We
consider n = 47 features to be consistent with previous studies
in [8]. The number of features used in the first-level classifier
is m = 5.

Fig. 3 shows the overall classification accuracy of our
proposed classification scheme (vertical axis) versus the re-
quired confidence level σ (horizontal axis). From Fig. 3, we
see that an increase in confidence level σ leads to an increase
in classification accuracy. This holds true, as an increase of
confidence level results in invoking the second-level classifier
more frequently. Based on Eq. (2), we calculate the expected
computational complexity of our technique versus the required
confidence level. As shown in Fig. 4, the second-level classifier
is not invoked all the time. In fact, even if we increase the
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Fig. 4: Estimated computational complexity of our real-time
event-driven technique. Each curve in this figure shows the
computational complexity obtained on the testing fold, while
the classifier has been trained on the remaining four folds. The
figure legend indicates the testing fold.

confidence level to σ = 0.99, the expected complexity of our
approach is less than 24 in terms of the number of features,
which is almost half of the proposed approach in [8].

For higher confidence level, higher computational complex-
ity is expected, as shown in Fig. 4. In this figure, we can deduce
that our approach reduces the classification complexity by
almost a factor of 3, as the maximal number of used features is
17.22 in comparison with 47 available features. After adapting
the algorithm proposed in [8] to SVM algorithm, it is possible
to reach an accuracy of 95%. As our technique still provides a
medically-acceptable accuracy of 90%, this loss of accuracy
results in the computational complexity that is almost 3 times
lower in comparison with the computational complexity of the
proposed approach in [8].

D. Energy consumption
We compare the energy consumption of our real-time

event-driven technique against the proposed approach in [8]
on an actual hardware platform, the SmartCardia device. The
comparison with previous work is outlined in Table I. For a
standard 710mAh battery, assuming that the processing is done
once per minute, the method proposed in [8] runs for 120.64
hours on a single battery charge. Our proposed classification
technique, however, reaches 394.58 hours, thus allowing for
more that 16 days of operation. Therefore, our event-driven
classification technique extends the battery life by a factor of
3.

TABLE I: Experimental comparison against previous work

Approach Accuracy % Complexity Battery life (h)

Previous work in [8] 95 47.00 120.64

Our technique 90 17.22 394.58

IV. CONCLUSIONS

In this paper we have addressed the problem of early
detection and prediction of myocardial infarction through the

use of a wearable device. In order to monitor the patients
on a long-term basis, we have proposed a two-level real-time
event-driven classification technique that reduces the energy
consumption while maintaining a high classification accuracy.
The experimental evaluation of our proposed classification
technique on MI data shows that this scheme reduces the
energy consumption by a factor of 3, while still maintaining
the accuracy at a medically-acceptable level.

ACKNOWLEDGMENT

This work has been partially supported by the Hasler
Foundation (project no. 15048), and RTD project ObeSense
(no. 20NA21 143081) evaluated by the Swiss NSF and funded
by Nano-Tera.ch with Swiss Confederation financing.

REFERENCES

[1] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals.”
Circulation, vol. 101, no. 23, pp. E215–20, jun 2000.

[2] “Heart Disease Facts & Statistics — cdc.gov.” [Online]. Available:
https://www.cdc.gov/heartdisease/facts.htm

[3] G. W. Reed, J. E. Rossi, and C. P. Cannon, “Acute myocardial infarction,”
The Lancet, vol. 389, no. 10065, pp. 197–210, jan 2017.

[4] K. Thygesen et al., “Third Universal Definition of Myocardial
Infarction,” Circulation, vol. 126, no. 16, 2012. [Online]. Available:
http://circ.ahajournals.org/content/126/16/2020

[5] A. J. Camm et al., The ESC textbook of cardiovascular medicine. Oxford
University Press, 2009.

[6] C. P. Cannon et al., “Relationship of Symptom-Onset-to-Balloon Time
and Door-to-Balloon Time With Mortality in Patients Undergoing
Angioplasty for Acute Myocardial Infarction,” JAMA, vol. 283, no. 22,
p. 2941, jun 2000.

[7] “WHO — Prevention of Recurrences of Myocardial
Infarction and Stroke Study,” WHO, 2013. [Online].
Available: http://www.who.int/cardiovascular{\ }diseases/priorities/
secondary{\ }prevention/country/en/index1.html

[8] U. R. Acharya et al., “Automated detection and localization of myocardial
infarction using electrocardiogram: a comparative study of different
leads,” Knowledge-Based Systems, vol. 99, pp. 146–156, 2016.

[9] R. Braojos, I. Beretta, G. Ansaloni, and D. Atienza, “Early Classification
of Pathological Heartbeats on Wireless Body Sensor Nodes,” Sensors,
vol. 14, no. 12, pp. 22 532–22 551, nov 2014.

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, sep 1995.

[11] M. Ribeiro, “Gaussian probability density functions: Properties and error
characterization,” 2004.
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