33 research outputs found

    Phytoremediation of persistent organic pollutants

    Get PDF
    Toxicity, chemical stability, bioaccumulation, and long-range transport of persistent organic pollutants (POPs) cause environmental and human health hazards, and demand the cleanup of remnants from previous applications. Phytoremediation uses living higher plants for the removal and biochemical decomposition of environmental pollutants and became a front-runner among cleanup technologies. The efficiency of plants as detoxifiers, filters or traps has been proven in cleaning up soils polluted with crude oil, explosives, landfill leachates, metals, pesticides, and solvents. Although phytoremediation of POPs is made very difficult by their low bioavailability, recent literature indicated that some plants (primarily those belonging to the Cucurbitaceae family) are capable of taking up significant amounts of POPs and accumulate them in their tissues. A joint French-Hungarian research project will investigate the possibility of phytoremediation of POP

    Metabolic Fate of [14C]Diuron and [14C]Linuron in Wheat (Triticum aestivum) and Radish (Raphanus sativus)

    Get PDF
    Metabolism of xenobiotics in plants usually occurs in three phases, phase I (primary metabolism), phase II (conjugation processes), and phase III (storage). The uptake and metabolism of [14C]diuron and [14C]linuron were investigated in wheat and radish. Seeds were sown in quartz sand and irrigated with a nutrient solution of either radioactive herbicide. Plants were harvested after two weeks, and metabolites were extracted and then analyzed by radio-reverse-high-performance liquid chromatography (HPLC). Uptake of the two molecules was higher in radish compared to wheat. Translocation of parent compounds and related metabolites from roots to aerial plant parts was important, especially for radish. A large proportion of extractable residues were found in radish whereas nonextractable residues amounted to 30% in wheat, mainly associated with roots. Chemical structure of metabolites was thereafter identified by acid, alkaline, and enzymatic hydrolyses followed by electrospray ionization mass spectrometry (ESI-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR). This study highlighted the presence of diuron and linuron metabolites conjugated to sugars in addition to N-demethylation and N-demethoxylation products

    Metabolic Fate of 2,4-Dichlorophenol and Related Plant Residues in Rats

    Get PDF
    This study compared the metabolic fate of [14C]-DCP, [14C]-residues from radish plants, and purified [14C]-DCP-(acetyl)glucose following oral administration in rats. A rapid excretion of radioactivity in urine occurred for [14C]-DCP, [14C]-DCP-(acetyl)glucose, and soluble residues, 69, 85, and 69% within 48 h, respectively. Radio-HPLC profiles of 0−24 h urine from rats fed [14C]-DCP and [14C]-DCP-(acetyl)glucose were close and qualitatively similar to those obtained from plant residues. No trace of native plant residues was detected under the study conditions. The structures of the two major peaks were identified by MS as the glucuronide and the sulfate conjugates of DCP. The characterization of a dehydrated glucuronide conjugate by MS and NMR of DCP was unusual. In contrast to soluble residues, bound residues were mainly excreted in feces, 90% within 48 h, whereas total residues were eliminated in both urine and feces. For total residues, the radioactivity in feces was higher than expected from the percentage of soluble and bound residues in radish plants. This result highlighted that less absorption took place when residues were present in the plant matrix as compared to plant-free residues and DCP

    Homeobox transcription factor HbxA influences expression of over one thousand genes in the model fungus \u3ci\u3eAspergillus nidulans\u3c/i\u3e

    Get PDF
    In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds

    Homeobox transcription factor HbxA influences expression of over one thousand genes in the model fungus \u3ci\u3eAspergillus nidulans\u3c/i\u3e

    Get PDF
    In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds

    Impact of veA on the development, aggressiveness, dissemination and secondary metabolism of Penicillium expansum

    Get PDF
    Penicillium expansum, the causal agent of blue mould disease, produces the mycotoxins patulin and citrinin amongst other secondary metabolites. Secondary metabolism is associated with fungal development, which responds to numerous biotic and abiotic external triggers. The global transcription factor VeA plays a key role in the coordination of secondary metabolism and differentiation processes in many fungal species. The specific role of VeA in P. expansum remains unknown. A null mutant PeΔveA strain and a complemented PeΔveA:veA strain were generated in P. expansum and their pathogenicity on apples was studied. Like the wild‐type and the complemented strains, the null mutant PeΔveA strain was still able to sporulate and to colonize apples, but at a lower rate. However, it could not form coremia either in vitro or in vivo, thus limiting its dissemination from natural substrates. The impact of veA on the expression of genes encoding proteins involved in the production of patulin, citrinin and other secondary metabolites was evaluated. The disruption of veA drastically reduced the production of patulin and citrinin on synthetic media, associated with a marked down‐regulation of all genes involved in the biosynthesis of the two mycotoxins. Moreover, the null mutant PeΔveA strain was unable to produce patulin on apples. The analysis of gene expression revealed a global impact on secondary metabolism, as 15 of 35 backbone genes showed differential regulation on two different media. These findings support the hypothesis that VeA contributes to the pathogenicity of P. expansum and modulates its secondary metabolism

    Growth parameters influencing uptake of chlordecone by Miscanthus species

    No full text
    Because of its high persistence in soils, t1/2 = 30 years, chlordecone (CLD) was classified as a persistent organic pollutant (POP) by the Stockholm Convention in 2009.The distribution of CLD over time has been heterogeneous, ranging from banana plantations to watersheds, and contaminating all environmental compartments. The aims of this study were to (i) evaluate the potential of Miscanthus species to extract chlordecone from contaminated soils, (ii) identify the growth parameters that influence the transfer of CLD from the soil to aboveground plant parts. CLD uptake was investigated in two species of Miscanthus, C4 plants adapted to tropical climates. M. sinensis and M. × giganteus were transplanted in a soil spiked with [14C]CLD at environmental concentrations (1 mg kg− 1) under controlled conditions. Root-shoot transfer of CLD was compared in the two species after two growing periods (2 then 6 months) after transplantation. CLD was found in all plant organs, roots, rhizomes, stems, leaves, and even flower spikes. The highest concentration of CLD was in the roots, 5398 ± 1636 (M. × giganteus) and 14842 ± 3210 ng g− 1 DW (M. sinensis), whereas the concentration in shoots was lower, 152 ± 28 (M. × giganteus) and 266 ± 70 ng g− 1 DW (M. sinensis) in soil contaminated at 1 mg kg− 1. CLD translocation led to an acropetal gradient from the bottom to the top of the plants. CLD concentrations were also monitored over two complete growing periods (10 months) in M. sinensis grown in 8.05 mg kg− 1 CLD contaminated soils. Concentrations decreased in M. sinensis shoots after the second growth period due to the increase in organic matters in the vicinity of the roots. Results showed that, owing to their respective biomass production, the two species were equally efficient at phytoextraction of CLD

    Selective induction of glutathione s-transferase subunits in wheat plants exposed to the herbicide acifluorfen

    No full text
    Exposure to the herbicide acifluorfen resulted in marked increase of glutathione S-transferase (GST) enzyme activity in wheat seedlings, primarily in shoot tissues. From the six major, constitutively expressed GST subunits found in un treated w heat shoots subunits 2 and 3 were selectively induced by acifluorfen. No new subunit could be detected. The induced subunits belong to those GST isoenzymes, which metabolize diphenyl ether herbicides

    Metabolic fate of [14C]-2,4-dichlorophenol in macrophytes

    No full text
    The metabolic fate of 2,4-dichlorophenol (DCP) was investigated in six macrophytes representing different life forms. Salvinia natans and Lemna minor were chosen as surface-floating plants, Glyceria maxima and Mentha aquatica as emergent species and Myriophyllum spicatum and Hippuris vulgaris as submerged aquatic plants. After uptake of a [U-phenyl-14C]-DCP solution followed by a 48 h water chase, whole plants (L. minor, S. natans) or excised shoots were harvested and aqueous extracts were analysed by high performance liquid chromatography (HPLC). Metabolites were then isolated, submitted to enzymatic or chemical hydrolyses and characterised by electrospray ionisation-mass spectrometric analyses. Whereas DCP monoglucosides or more complex monoglucoside esters, either malonyl or acetyl, were found in most species, an unusual glucosyl-pentose conjugate was identified as the DCP major metabolite in L. minor and G. maxima. Our results showed for the first time the ability of five macrophytes to uptake and metabolise DCP and the characterisation of their metabolic pathways of DCP biotransformation

    Metabolism of [14C]-2,4,6-trinitrotoluene in tobacco cell suspension cultures

    No full text
    The metabolism of 2,4,6-trinitrotoluene (TNT) was investigated in tobacco cell suspension cultures amended with [14C]-TNT. Five metabolites were purified and characterized. Temporal evolution of metabolites was monitored during a 120 h incubation period. Metabolites structure was identified by acid and enzymatic hydrolysis, followed by electrospray ionization mass spectrometry and 1H and 13C NMR spectroscopy analyses. The majority of metabolites were conjugates formed by glycose conjugation on the hydroxylamine group of either 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT) or 4-hydroxylamino-2,6-dinitrotoluene (4-HADNT), which led to monoglycoside then to diglycoside. Various diglycosides were observed with gentiobioside or sophoroside formation. Bound residues represented a small fraction (<10% of initial 14C) irrespective of the interval after TNT amendment. Free ADNT was detected only in the medium. This study highlights the central role played by HADNT in the TNT metabolic pathway in tobacco cell suspension culture, and the key role of these compounds and of glycosyltransferases in TNT phytoremediation processes
    corecore