11 research outputs found

    Quality of life and tumor control after short split-course chemoradiation for anal canal carcinoma

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To evaluate quality of life (QOL) and outcome of patients with anal carcinoma treated with short split-course chemoradiation (CRT).</p> <p>Methods</p> <p>From 1991 to 2005, 58 patients with anal cancer were curatively treated with CRT. External beam radiotherapy (52 Gy/26 fractions) with elective groin irradiation (24 Gy) was applied in 2 series divided by a median gap of 12 days. Chemotherapy including fluorouracil and Mitomycin-C was delivered in two sequences. Long-term QOL was assessed using the site-specific EORTC QLQ-CR29 and the global QLQ-C30 questionnaires.</p> <p>Results</p> <p>Five-year local control, colostomy-free survival, and overall survival were 78%, 94% and 80%, respectively. The global QOL score according to the QLQ-C30 was good with 70 out of 100. The QLQ-CR29 questionnaire revealed that 77% of patients were mostly satisfied with their body image. Significant anal pain or fecal incontinence was infrequently reported. Skin toxicity grade 3 or 4 was present in 76% of patients and erectile dysfunction was reported in 100% of male patients.</p> <p>Conclusions</p> <p>Short split-course CRT for anal carcinoma seems to be associated with good local control, survival and long-term global QOL. However, it is also associated with severe acute skin toxicity and sexual dysfunction. Implementation of modern techniques such as intensity-modulated radiation therapy (IMRT) might be considered to reduce toxicity.</p

    Multispectral detection allows identifying D1 and D2 expressing neurons.

    No full text
    <p>A) Schema of the shutters state and incident signals on the detecting PMTs as the probe passes by a green and a red cell in succession. B) (Left) Micrograph of a GFP fluorescent cell and a microprobe (highlighted with gray contour). Scale bar is 10 ”m. (Right) Collected fluorescence in the PMT detector 1 (green dots), and 2 (red dots) as the probe is moved transversally in front of the cell shown in left panel. C) Same result is shown as the probe pass by a tdTomato fluorescent cell. Scale bar is 10 ”m. Arrows in (B) and (C) represent the probe displacement in front of the cell. D) Striatal section of a transgenic mouse showing cells expressing fluorescent proteins under the control of D1 (red) or D2 (green) receptor (green) promoters. Some cells co-express both fluorescent proteins (see arrow). E) Average density of the different cell types in the striatum (n = 5 striatal sections). Cells were counted and densities were estimated with the help of the software Image J. F) Histogram of the optically detected cells. Fluorescent cell detections were accompanied by a rise (signal-to-noise >2) and a decay of green and/or red fluorescence as described previously. A total of 29 cells were detected and computed in a histogram according to their fluorescence colour. (G-H) Examples of <i>in vivo</i> simultaneous optical and electrical recordings (inset) as the probe pass by a green (G) or a red (H) cell.</p

    Impact of fluorescence collection through the microprobe walls.

    No full text
    <p>A1) Schematics of the coated and uncoated microprobe descents into fluorescent agar. A2) Fluorescence measurements for different penetration depths into fluorescent agar for bare (green) and coated (white) probes (n = 5 probes; 1°<<i>ξ</i> <3°)). B) Effect of the coating on the fluorescence DC level when a bare (green) or a coated (black) probe is lowered into cortex and thalamic issue. Arrows show location of fluorescent cells (inset: representation of the probe displacement).</p

    Side acceptance of tapered waveguides.

    No full text
    <p>A) 2D schematic representation of ray acceptance within a tapered waveguide (thick black boundaries). Note that for visualization purpose the taper angle was exaggerated in this illustration. B) Critical accepted incidence angle <i>Ξ</i><sub>1c</sub> as a function of the taper angle <i>Ξ</i>. Rays with incidence angles ranging from <i>Ξ</i><sub>1c</sub> to 90° will be accepted in the waveguide (parameters were fixed as follows: <i>R</i> = 100 ”m, <i>R</i><sub>f = </sub>5 ”m, <i>r</i><sub>c = </sub>60 ”m, <i>r</i><sub>cf</sub> = 3 ”m, <i>n</i><sub>0</sub> = 1 (air), <i>n</i><sub>0</sub> = 1.35 (tissue) <i>n</i><sub>1</sub> = 1.47 and <i>n</i><sub>2</sub> = 1.45).</p

    Optical and electrical microprobes.

    No full text
    <p>a) Schematic representation of the probe (left) and a metal coated probe adapted to achieve large field recording through the Al coating (middle: 3D representation, right: transverse cut view). Insets are scanning electron microscopy images of the respective electrode tips (scale bars are 2 ”m). b) Experimental setup for multispectral detection showing : (1) 543 nm laser (25-LGR-193-249, Melles Griot), (2) 488 nm laser (FCD488 24 mW, JDS Uniphase Corporation), (3) shutters (LS3,Uniblitz), (4) 495 nm dichroic mirror (495DCLP, Chroma Technology Corporation), (5) multiline dichroic mirror (51015bs, Chroma Technology Corporation), (6) 495 nm dichroic mirror (495DCLP, Chroma Technology Corporation), (7) PMT detectors (H6780-20, Hamamatsu) and bandpass filters (ET520/40M and ET005/52M, Chroma Technology Corporation) and (8) objective (UIS-2 Plan-N, NA = 0.25, Olympus Corporation) and the fibre optic launch system (KT110, Thorlabs Inc.).</p

    Photoconversion of mEOS.

    No full text
    <p>A–B) Images at different time points of a mEOS2 expressing cell during UV-induced photoconversion. UV illumination with the probe causes an increase in red fluorescence (A) and a decrease in green signal (B). C) Red and green emission of a cell during photo-conversion as a function of time. The region of interest taken into account is shown in (A) (white circle). Note that only two time points were measured for the green signal. Change in background fluorescence around the cell is shown in black.</p

    Coated glass microprobes enable dual electrical recordings.

    No full text
    <p>A) Schematic representation of a multimodal microprobe tip. B) Measured resistance as a function of the uninsulated surface. C) Simultaneous recording of field potential oscillations and single unit achieved with the microprobes. Spikes were computed in a time histogram (C1). Inset: overlay of 10 successive spikes (vertical scale bar: 0.1 mV, horizontal scale bar: 1 ms) (C2) according to time of occurrence relative to field maxima (arrows in c1; n = 15) and into an interspike interval histograms (C3).</p
    corecore