8 research outputs found

    Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer

    Get PDF
    Background: Functionalized nanoparticles (NPs) are one promising tool for detecting specific molecular targets and combine molecular biology and nanotechnology aiming at modern imaging. We aimed at ligand-directed delivery with a suitable target-biomarker to detect early pancreatic ductal adenocarcinoma (PDAC). Promising targets are galectins (Gal), due to their strong expression in and on PDAC-cells and occurrence at early stages in cancer precursor lesions, but not in adjacent normal tissues. Results: Molecular probes (10-29 AA long peptides) derived from human tissue plasminogen activator (t-PA) were selected as binding partners to galectins. Affinity constants between the synthesized t-PA peptides and Gal were determined by microscale thermophoresis. The 29 AA-long t-PA-peptide-1 with a lactose-functionalized serine revealed the strongest binding properties to Gal-1 which was 25-fold higher in comparison with the native t-PA protein and showed additional strong binding to Gal-3 and Gal-4, both also over-expressed in PDAC. t-PA-peptide-1 was selected as vector moiety and linked covalently onto the surface of biodegradable iron oxide nanoparticles (NPs). In particular, CAN-doped maghemite NPs (CAN-Mag), promising as contrast agent for magnetic resonance imaging (MRI), were selected as magnetic core and coated with different biocompatible polymers, such as chitosan (CAN-Mag-Chitosan NPs) or polylactic co glycolic acid (PLGA) obtaining polymeric nanoparticles (CAN-Mag@PNPs), already approved for drug delivery applications. The binding efficacy of t-PA-vectorized NPs determined by exposure to different pancreatic cell lines was up to 90%, as assessed by flow cytometry. The in vivo targeting and imaging efficacy of the vectorized NPs were evaluated by applying murine pancreatic tumor models and assessed by 1.5 T magnetic resonance imaging (MRI). The t-PA-vectorized NPs as well as the protease-activated NPs with outer shell decoration (CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac) showed clearly detectable drop of subcutaneous and orthotopic tumor staining-intensity indicating a considerable uptake of the injected NPs. Post mortem NP deposition in tumors and organs was confirmed by Fe staining of histopathology tissue sections. Conclusions: The targeted NPs indicate a fast and enhanced deposition of NPs in the murine tumor models. The CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac interlocking steps strategy of NPs delivery and deposition in pancreatic tumor is promising

    Differential diagnosis of autoimmune pancreatitis from pancreatic cancer by analysis of serum gelatinase levels

    No full text
    The aim of this study was to analyze serum gelatinases as part of the clinical strategy for the preoperative differentiation between autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). The finding of differential markers will prevent unnecessary surgical resection and allow optimal treatment of these diseases.status: publishe

    Predictive and prognostic value of tumor volume and its changes during radical radiotherapy of stage III non-small cell lung cancer A systematic review

    No full text
    Lung cancer remains the leading cause of cancer-related mortality worldwide. Stage III non-small cell lung cancer (NSCLC) includes heterogeneous presentation of the disease including lymph node involvement and large tumour volumes with infiltration of the mediastinum, heart or spine. In the treatment of stage III NSCLC an interdisciplinary approach including radiotherapy is considered standard of care with acceptable toxicity and improved clinical outcome concerning local control. Furthermore, gross tumour volume (GTV) changes during definitive radiotherapy would allow for adaptive replanning which offers normal tissue sparing and dose escalation. A literature review was conducted to describe the predictive value of GTV changes during definitive radiotherapy especially focussing on overall survival. The literature search was conducted in a two-step review process using PubMedA (R)/MedlineA (R) with the key words stage III non-small cell lung cancer and radiotherapy and tumour volume and prognostic factors. After final consideration 17, 14 and 9 studies with a total of 2516, 784 and 639 patients on predictive impact of GTV, GTV changes and its impact on overall survival, respectively, for definitive radiotherapy for stage III NSCLC were included in this review. Initial GTV is an important prognostic factor for overall survival in several studies, but the time of evaluation and the value of histology need to be further investigated. GTV changes during RT differ widely, optimal timing for re-evaluation of GTV and their predictive value for prognosis needs to be clarified. The prognostic value of GTV changes is unclear due to varying study qualities, re-evaluation time and conflicting results. The main findings were that the clinical impact of GTV changes during definitive radiotherapy is still unclear due to heterogeneous study designs with varying quality. Several potential confounding variables were found and need to be considered for future studies to evaluate GTV changes during definitive radiotherapy with respect to treatment outcome

    Roadmap for Precision preclinical x-ray radiation studies

    Get PDF
    This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed
    corecore