35 research outputs found

    Increase in Tomato Locule Number Is Controlled by Two Single-Nucleotide Polymorphisms Located

    Get PDF
    In tomato (Solanum lycopersicum) fruit, the number of locules (cavities containing seeds that are derived from carpels) varies from two to up to 10 or more. Locule number affects fruit shape and size and is controlled by several quantitative trait loci(QTLs). The large majority of the phenotypic variation is explained by two of these QTLs, fasciated (fas) and locule number (lc), that interact epistatically with one another. FAS has been cloned, and mutations in the gene are described as key factors leading to the increase in fruit size in modern varieties. Here, we report the map-based cloning of lc. The lc QTL includes a 1,600-bp region that is located 1,080 bp from the 3# end of WUSCHEL, which encodes a homeodomain protein that regulates stem cell fate in plants. The molecular evolution of lc showed a reduction of diversity in cultivated accessions with the exception of two single-nucleotide polymorphisms. These two single-nucleotide polymorphisms were shown to be responsible for the increase in locule number. An evolutionary model of locule number is proposed herein, suggesting that the fas mutation appeared after the mutation in the lc locus to confer the extreme high-locule-number phenotype

    Aromatase expression and role of estrogens in male gonad : a review

    Get PDF
    The ability of the testis to convert irreversibly androgens into estrogens is related to the presence of a microsomal enzymatic complex named aromatase, which is composed of a specific glycoprotein, the cytochrome P450 aromatase (P450arom) and an ubiquitous reductase. The aromatase gene is unique in humans and contained 18 exons, 9 of them being translated. In the rat testis we have immunolocalized the P450arom not only in Leydig cells but also in germ cells and especially in elongated spermatids. Related to the stage of germ cell maturation, we have shown that the level of P450arom mRNA transcripts decreases, it is much more abundant in pachytene spermatocytes and round spermatids than in mature germ cells whereas the aromatase activity is 2–4 fold greater in spermatozoa when compared to the younger germ cells. Using a highly specific quantitative competitive RT-PCR method we have evidenced that several factors direct the expression of the aromatase gene in Leydig cells, Sertoli cells, pachytene spermatocytes and round spermatids, and it is obvious that promoter PII is the main one but other promoters could be concerned. In the bank-vole testis we have observed a positive correlation between a fully developed spermatogenesis and a strong immunoreactivity for both P450arom and estrogen receptor β not only in Sertoli cells but also in pachytene spermatocytes and round spermatids. Our recent data obtained from ejaculated human spermatozoa demonstrate the presence of aromatase both in terms of mRNA and protein, and in addition, we suggest that aromatase could be involved in the acquisition of sperm motility. Indeed in men the congenital aromatase deficiency is associated with severe bone maturation problems and sterility. Together with the widespread distribution of estrogen receptors in testicular cells these data clearly show that estrogens play a physiological role in the regulation of spermatogenesis in mammals

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning

    Enzyme closure and nucleotide binding structurally lock guanylate kinase.

    Get PDF
    International audienceWe investigate the conformational dynamics and mechanical properties of guanylate kinase (GK) using a multiscale approach combining high-resolution atomistic molecular dynamics and low-resolution Brownian dynamics simulations. The GK enzyme is subject to large conformational changes, leading from an open to a closed form, which are further influenced by the presence of nucleotides. As suggested by recent work on simple coarse-grained models of apo-GK, we primarily focus on GK's closure mechanism with the aim to establish a detailed picture of the hierarchy and chronology of structural events essential for the enzymatic reaction. We have investigated open-versus-closed, apo-versus-holo, and substrate-versus-product-loaded forms of the GK enzyme. Bound ligands significantly modulate the mechanical and dynamical properties of GK and rigidity profiles of open and closed states hint at functionally important differences. Our data emphasizes the role of magnesium, highlights a water channel permitting active site hydration, and reveals a structural lock that stabilizes the closed form of the enzyme

    Functional Modes and Residue Flexibility Control the Anisotropic Response of Guanylate Kinase to Mechanical Stress

    Get PDF
    International audienceThe coupling between the mechanical properties of enzymes and their biological activity is a well-established feature that has been the object of numerous experimental and theoretical works. In particular, recent experiments show that enzymatic function can be modulated anisotropically by mechanical stress. We study such phenomena using a method for investigating local flexibility on the residue scale that combines a reduced protein representation with Brownian dynamics simulations. We performed calculations on the enzyme guanylate kinase to study its mechanical response when submitted to anisotropic deformations. The resulting modifications of the protein's rigidity profile can be related to the changes in substrate binding affinity observed experimentally. Further analysis of the principal components of motion of the trajectories shows how the application of a mechanical constraint on the protein can disrupt its dynamics, thus leading to a decrease of the enzyme's catalytic rate. Eventually, a systematic probe of the protein surface led to the prediction of potential hotspots where the application of an external constraint would produce a large functional response both from the mechanical and dynamical points of view. Such enzyme-engineering approaches open the possibility to tune catalytic function by varying selected external forces
    corecore