18 research outputs found

    Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells

    Get PDF
    Interstrand cross-link (ICL) is a covalent modification of both strands of DNA, which prevents DNA strand separation during transcription and replication. Upon photoactivation 8-methoxypsoralen (8-MOP+UVA) alkylates both strands of DNA duplex at the 5,6-double bond of thymidines, generating monoadducts (MAs) and ICLs. It was thought that bulky DNA lesions such as MAs are eliminated only in the nucleotide excision repair pathway. Instead, non-bulky DNA lesions are substrates for DNA glycosylases and AP endonucleases which initiate the base excision repair (BER) pathway. Here we examined whether BER might be involved in the removal of psoralen–DNA photoadducts. The results show that in human cells DNA glycosylase NEIL1 excises the MAs in duplex DNA, subsequently the apurinic/apyrimidinic endonuclease 1, APE1, removes the 3â€Č-phosphate residue at single-strand break generated by NEIL1. The apparent kinetic parameters suggest that NEIL1 excises MAs with high efficiency. Consistent with these results HeLa cells lacking APE1 and/or NEIL1 become hypersensitive to 8-MOP+UVA exposure. Furthermore, we demonstrate that bacterial homologues of NEIL1, the Fpg and Nei proteins, also excise MAs. New substrate specificity of the Fpg/Nei protein family provides an alternative repair pathway for ICLs and bulky DNA damage

    7,8-dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases

    Get PDF
    Hydroxyl radicals predominantly react with the C8 of purines forming 7,8-dihydro-8-oxoguanine (8oxoG) and 7,8-dihydro-8-oxoadenine (8oxoA) adducts, which are highly mutagenic in mammalian cells. The majority of oxidized DNA bases are removed by DNA glycosylases in the base excision repair pathway. Here, we report for the first time that human thymine-DNA glycosylase (hTDG) and Escherichia coli mismatch-specific uracil-DNA glycosylase (MUG) can remove 8oxoA from 8oxoA‱T, 8oxoA‱G and 8oxoA‱C pairs. Comparison of the kinetic parameters of the reaction indicates that full-length hTDG excises 8oxoA, 3,N4-ethenocytosine (ΔC) and T with similar efficiency (kmax = 0.35, 0.36 and 0.16 min−1, respectively) and is more proficient as compared with its bacterial homologue MUG. The N-terminal domain of the hTDG protein is essential for 8oxoA-DNA glycosylase activity, but not for ΔC repair. Interestingly, the TDG status had little or no effect on the proliferation rate of mouse embryonic fibroblasts after exposure to Îł-irradiation. Nevertheless, using whole cell-free extracts from the DNA glycosylase-deficient murine embryonic fibroblasts and E. coli, we demonstrate that the excision of 8oxoA from 8oxoA‱T and 8oxoA‱G has an absolute requirement for TDG and MUG, respectively. The data establish that MUG and TDG can counteract the genotoxic effects of 8oxoA residues in viv

    Integrative Conjugative Elements and Related Elements Are Major Contributors to the Genome Diversity of Streptococcus agalactiae▿ §

    No full text
    Thirty-five putative integrative conjugative elements and related elements were identified at 15 locations in the eight sequenced genomes of Streptococcus agalactiae. Twelve are composite, likely resulting from site-specific accretions. Circular forms were detected for five elements. Macroarray analysis confirmed their high plasticity and wide distribution in S. agalactiae

    Von Hippel-Lindau : How a rare disease illuminates cancer biology

    No full text
    International audienceVon Hippel–Lindau (VHL) disease is a rare autosomal dominant syndrome (1/36,000 live births) with highly penetrance that predispose to the development of a panel of highly vascularized tumors (model of tumoral angiogenesis). Main manifestations include central nervous system (CNS) and retinal haeman-gioblastomas, endolymphatic sac tumors, clear-cell renal cell carcinomas (RCC), phaeochromocytomas and pancreatic neuroendocrine tumors. RCC has become the first potential cause of mortality and VHL disease is the main cause of inherited RCC. The disease is caused by germline mutations in the VHL tumor-suppressor gene that plays a major role in regulation of the oxygen-sensing pathway by targeting the hypoxia-inducible factor HIF for degradation in proteasome. VHL has also major HIF-independent functions , specially in regulation of primary cilium, extracellular matrix and apoptosis. Somatic inactivation of the VHL gene is the main molecular event in most sporadic RCC and the treatment of advanced RCC has been revolutionized by targeted therapy with drugs that block angiogenesis. These drugs are now in first line in metastatic sporadic RCC and have shown promising results for RCC, pancreatic neuroendocrine tumors and malignant pheochromocytomas in VHL patients

    The Most Common VHL Point Mutation R167Q in Hereditary VHL Disease Interferes with Cell Plasticity Regulation

    No full text
    International audienceVon Hippel–Lindau disease (VHL) is a rare hereditary syndrome due to mutations of the VHL tumor suppressor gene. Patients harboring the R167Q mutation of the VHL gene have a high risk of developing ccRCCs. We asked whether the R167Q mutation with critical aspects of pseudo-hypoxia interferes with tumor plasticity. For this purpose, we used wild-type VHL (WT-VHL) and VHL-R167Q reconstituted cells. We showed that WT-VHL and VHL-R167Q expression had a similar effect on cell morphology and colony formation. However, cells transfected with VHL-R167Q display an intermediate, HIF2-dependent, epithelial–mesenchymal phenotype. Using RNA sequencing, we showed that this mutation upregulates the expression of genes involved in the hypoxia pathway, indicating that such mutation is conferring an enhanced pseudo-hypoxic state. Importantly, this hypoxic state correlates with the induction of genes belonging to epithelial–mesenchymal transition (EMT) and stemness pathways, as revealed by GSEA TCGA analysis. Moreover, among these deregulated genes, we identified nine genes specifically associated with a poor patient survival in the TCGA KIRC dataset. Together, these observations support the hypothesis that a discrete VHL point mutation interferes with tumor plasticity and may impact cell behavior by exacerbating phenotypic switching. A better understanding of the role of this mutation might guide the search for more effective treatments to combat ccRCCs
    corecore