26 research outputs found

    Overcoming Target Driven Fratricide for T Cell Therapy

    Get PDF
    Chimeric Antigen Receptor (CAR) T cells expressing the fusion of the NKG2D protein with CD3ζ (NKG2D-CAR T Cells) acquire a specificity for stress-induced ligands expressed on hematological and solid cancers. However, these stress ligands are also transiently expressed by activated T cells implying that NKG2D-based T cells may undergo self-killing (fratricide) during cell manufacturing or during the freeze thaw cycle prior to infusion in patients. To avoid target-driven fratricide and enable the production of NKG2D-CAR T cells for clinical application, two distinct approaches were investigated. The first focused upon the inclusion of a Phosphoinositol-3-Kinase inhibitor (LY294002) into the production process. A second strategy involved the inclusion of antibody blockade of NKG2D itself. Both processes impacted T cell fratricide, albeit at different levels with the antibody process being the most effective in terms of cell yield. While both approaches generated comparable NKG2D-CAR T cells, there were subtle differences, for example in differentiation status, that were fine-tuned through the phasing of the inhibitor and antibody during culture in order to generate a highly potent NKG2D-CAR T cell product. By means of targeted inhibition of NKG2D expression or generic inhibition of enzyme function, target-driven CAR T fratricide can be overcome. These strategies have been incorporated into on-going clinical trials to enable a highly efficient and reproducible manufacturing process for NKG2D-CAR T cells

    Th1 Disabled Function in Response to TLR4 Stimulation of Monocyte-Derived DC from Patients Chronically-Infected by Hepatitis C Virus

    Get PDF
    Background: Lack of protective antibodies and inefficient cytotoxic responses are characteristics of chronic hepatitis C infection. A defect in dendritic cell (DC) function has thus been suspected, but this remains a controversial issue. Methods and Findings: Here we show that monocyte-derived DC (MoDC) from chronically-infected patients can mature in response to TLR1/2, TLR2/6 or TLR3 ligands. In contrast, when stimulated with the TLR4 ligand LPS, MoDC from patients show a profound defect in inducing IFNc secretion by allogeneic T cells. This defect is not due to defective phenotypic maturation or to the presence of HCV-RNA in DC or monocytes but is correlated to reduced IL-12 secretion by DC. Restoration of DC ability to stimulate IFNc secretion can be obtained by blocking MEK activation in DC, indicating that MEK/ ERK pathway is involved in the Th1 defect of MoDC. Monocytes from HCV patients present increased spontaneous secretion of cytokines and chemokines, especially MIP-1b. Addition of MIP-1b on healthy monocytes during differentiation results in DC that have Th1 defect characteristic of MoDC from HCV patients, suggesting that MIP-1b secretion by HCV monocytes participates in the Th1 defect of DC. Conclusions: Our data indicate that monocytes from HCV patients are activated in vivo. This interferes with their differentiation into DC, leading to deficient TLR4 signaling in these cells that are enable to induce a Th1 response. Thi

    1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity.

    No full text
    International audienceThe compound 1-methyl-tryptophan (1-MT) is a competitive inhibitor of IDO that can break tolerance and induce fetus, graft, and tumor rejection. Because of its broad effect on immune-related mechanisms, the direct action of 1-MT on human monocyte-derived dendritic cells (DC) was analyzed. It is shown here that the effect of 1-MT on DC is dependent on the maturation pathway. Although 1-MT had no effect on DC stimulated by the TLR3 ligand poly(I:C), it strongly enhanced the Th1 profile of DC stimulated with TLR2/1 or TLR2/6 ligands. Drastic changes in the function of DC stimulated by the TLR4 ligand LPS were induced by 1-MT. These cells could still activate allogeneic and syngeneic T cells but stimulation yielded T cells secreting IL-5 and IL-13 rather than IFN-gamma. This action of 1-MT correlated with an increased phosphorylation of p38 and ERK MAPKs and sustained activation of the transcription factor c-Fos. Inhibiting p38 and ERK phosphorylation with synthetic inhibitors blocked the effect of 1-MT on LPS-stimulated DC. Thus, 1-MT can modulate DC function depending on the maturation signal and independently of its action on IDO. This is consistent with previous observations and will help further understanding the mechanisms of DC polarization

    Sensing environmental lipids by dendritic cell modulates its function.

    No full text
    International audienceBecause of its oxidative modification during the acute-phase response to an aggression, low density lipoprotein (LDL) can be regarded as a source of lipid mediators that can act both to promote and inhibit inflammation. This can be exemplified by the production of anti-inflammatory oxidized fatty acids and proinflammatory lysophosphatidylcholine (LPC) during LDL oxidation. We have shown previously that oxidized LDL (oxLDL) plays an active role at the interface between innate and adaptive immunity by delivering instructive molecules such as LPC, which promotes mature dendritic cell (DC) generation from differentiating monocytes. It is shown in this study that LPC affects the signaling pathway of peroxisome proliferator-activated receptors (PPARs). LPC-induced DC maturation is associated with complete inhibition of PPARgamma activity and up-regulation of the activity of an uncharacterized nuclear receptor that bind peroxisome proliferator response element. Oxidized fatty acids generated during LDL oxidation are natural ligands for PPARgamma and inhibit oxLDL- and LPC-induced maturation. Inhibition experiments with synthetic PPARgamma ligands suggested a PPARgamma-dependent and independent effect of LPC on DC maturation. Therefore, the relative amount of oxidized fatty acids and LPC influences the immunological functions of oxLDL on DC, in part by regulating the PPAR pathway. By sensing the biochemical composition of lipoprotein particles, the innate immune system may thus identify various endogenous signals that influence the immune response during the acute-phase reaction. The therapeutic emulsion intralipid also blocks LPC action on PPAR activity and DC maturation. Intralipid may thus be an alternative therapeutic strategy for some chronic inflammatory diseases
    corecore