16 research outputs found

    Impact of Immunization Technology and Assay Application on Antibody Performance – A Systematic Comparative Evaluation

    Get PDF
    Antibodies are quintessential affinity reagents for the investigation and determination of a protein's expression patterns, localization, quantitation, modifications, purification, and functional understanding. Antibodies are typically used in techniques such as Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assays (ELISA), among others. The methods employed to generate antibodies can have a profound impact on their success in any of these applications. We raised antibodies against 10 serum proteins using 3 immunization methods: peptide antigens (3 per protein), DNA prime/protein fragment-boost (“DNA immunization”; 3 per protein), and full length protein. Antibodies thus generated were systematically evaluated using several different assay technologies (ELISA, IHC, and Western blot). Antibodies raised against peptides worked predominantly in applications where the target protein was denatured (57% success in Western blot, 66% success in immunohistochemistry), although 37% of the antibodies thus generated did not work in any of these applications. In contrast, antibodies produced by DNA immunization performed well against both denatured and native targets with a high level of success: 93% success in Western blots, 100% success in immunohistochemistry, and 79% success in ELISA. Importantly, success in one assay method was not predictive of success in another. Immunization with full length protein consistently yielded the best results; however, this method is not typically available for new targets, due to the difficulty of generating full length protein. We conclude that DNA immunization strategies which are not encumbered by the limitations of efficacy (peptides) or requirements for full length proteins can be quite successful, particularly when multiple constructs for each protein are used

    The human secretome

    Get PDF
    The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood

    High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer

    No full text
    Purpose: In this study, we investigated the prognostic impact of human RBM3 expression in colorectal cancer using tissue microarray-based immunohistochemical analysis. Experimental design: One polyclonal antibody and four monoclonal anti-RBM3 antibodies were generated and epitope mapped using two different methods. Bacterial display revealed five distinct epitopes for the polydonal antibody, while the four mouse monoclonal antibodies were found to bind to three of the five epitopes. A peptide suspension bead array assay confirmed the five epitopes of the polydonal antibody, while only one of the monoclonal antibodies could be mapped using this approach. Antibody specificity was confirmed by Western blotting and immunohistochemistry, including siRNA-mediated knock-down. Two of the antibodies (polydonal and monoclonal) were subsequently used to analyze RBM3 expression in tumor samples from two independent colorectal cancer cohorts, one consecutive cohort (n = 270) and one prospectively collected cohort of patients with cancer of the sigmoid colon (n = 305). RBM3-expression was detected, with high correlation between both antibodies (R = 0.81, p < 0.001). Results: In both cohorts, tumors with high nuclear RBM3 staining had significantly prolonged the overall survival. This was also confirmed in multivariate analysis, adjusted for established prognostic factors. Conclusion and clinical relevance: These data demonstrate that high tumor-specific nuclear expression of RBM3 is an independent predictor of good prognosis in colorectal cancer

    Enhanced validation of antibodies for research applications

    Get PDF
    There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users

    Contribution of Antibody-based Protein Profiling to the Human Chromosome-centric Proteome Project (C-HPP)

    No full text
    A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas (www.proteinatlas.org)

    A subcellular map of the human proteome

    No full text
    Mapping the proteome Proteins function in the context of their environment, so an understanding of cellular processes requires a knowledge of protein localization. Thul et al. used immunofluorescence microscopy to map 12,003 human proteins at a single-cell level into 30 cellular compartments and substructures (see the Perspective by Horwitz and Johnson). They validated their results by mass spectroscopy and used them to model and refine protein-protein interaction networks. The cellular proteome is highly spatiotemporally regulated. Many proteins localize to multiple compartments, and many show cell-to-cell variation in their expression patterns. Presented as an interactive database called the Cell Atlas, this work provides an important resource for ongoing efforts to understand human biology. Science , this issue p. eaal3321 ; see also p. 806 </jats:p
    corecore