29 research outputs found

    Measurements of near-surface turbulence and mixing from autonomous ocean gliders

    Get PDF
    Author Posting. © The Oceanography Society, 2017. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 30, no. 2 (2017): 116–125, doi:10.5670/oceanog.2017.231.As autonomous sampling technologies have matured, ocean sensing concepts with long histories have migrated from their traditional ship-based roots to new platforms. Here, we discuss the case of ocean microstructure sensing, which provides the basis for direct measurement of small-scale turbulence processes that lead to mixing and buoyancy flux. Due to their hydrodynamic design, gliders are an optimal platform for microstructure sensing. A buoyancy-driven glider can profile through the ocean with minimal vibrational noise, a common limitation of turbulence measurements from other platforms. Moreover, gliders collect uncontaminated data during both descents and ascents, permitting collection of near-surface measurements unattainable from ship-based sensing. Persistence and the capability to sample in sea states not feasible for deck-based operations make glider-based microstructure sampling a profoundly valuable innovation. Data from two recent studies illustrate the novel aspects of glider-based turbulence sensing. Surface stable layers, characteristic of conditions with incoming solar radiation and weak winds, exemplify a phenomenon not easily sampled with ship-based methods. In the North Atlantic, dissipation rate measurements in these layers revealed unexpected turbulent mixing during times of peak warming, when enhanced stratification in a thin layer led to an internal wave mode that received energy from the deeper internal wave field of the thermocline. Hundreds of profiles were obtained in the Bay of Bengal through a barrier layer that separates a strongly turbulent surface layer from a surprisingly quiescent interior just 20 m below. These studies demonstrate the utility of buoyancy-driven gliders for collecting oceanic turbulence measurements.We thank the US Office of Naval Research (ONR) for supporting the development of autonomous glider systems and the integration effort to incorporate microstructure sensing. The National Science Foundation supported the SPURS microstructure glider effort. ONR supported for the glider program in the Bay of Bengal

    Mechanisms for enhanced turbulence in the Drake Passage region of the Southern Ocean

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2016The Southern Ocean is one of the most energetic regions of the world ocean due to intense winds and storm forcing, strong currents in the form of the Antarctic Circumpolar Current (ACC) interacting with steep topography, and enhanced mesoscale activity. Consequently, the Southern Ocean is believed to be a hotspot for enhanced oceanic mixing. Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. Previous studies have used indirect methods based on finestructure observations to suggest that strong mixing is ubiquitous below the mixed layer. Results from a US/UK field program, however, showed that enhanced internal wave finestructure and turbulence levels are not widespread, but limited to frontal zones where strong bottom currents collide with steep, large amplitude topography. This thesis studies the processes that support turbulence and mixing in the surface boundary layer and at intermediate depths in the Drake Passage region. Direct measurements of turbulence show that previous estimates of mixing rates in the upper 1km are biased high by up to two orders of magnitude. These biases are discussed in the context of the internal wave environment and enhanced thermohaline finestructure. The dissipation rate of thermal variance is enhanced in the upper 1000m, with the highest values found in northern Drake Passage where water mass variability is the most pronounced. Double diffusive processes and turbulence both contribute to buoyancy flux, elevating the effective mixing efficiency above the canonical value of 0.2 in the upper 1km. Despite the prevalence of energetic wind events, turbulence driven by downward propagating near-inertial wave shear is weak below the mixed layer. The results of this study inform large-scale modeling efforts through parameterizations of mixing processes in the highly undersampled Southern Ocean.My time in the Joint Program was funded by the National Science Foundation through OCE-1232962

    Shutdown of convection triggers increase of surface chlorophyll

    Get PDF
    The long-standing explanation of the triggering cause of the surface increase of phytoplankton visible in spring satellite images argues that phytoplankton biomass accumulation begins once the mixed layer depths become shallower than a ‘critical depth’. However, a series of recent studies have found evidence for phytoplankton increase in deep mixed layers, and several hypotheses have been proposed to explain this early increase. In this manuscript it is suggested that the surface concentration of phytoplankton increases rapidly in a ‘surface bloom’ when atmospheric cooling of the ocean turns into an atmospheric heating at the end of winter. The hypothesis is supported by analysis of satellite observations of chlorophyll and of heat fluxes from atmospheric reanalysis from the North Atlantic.National Science Foundation (U.S.) (Award OCE-1155205

    Contamination of Finescale Strain Estimates of Turbulent Kinetic Energy Dissipation by Frontal Physics

    Get PDF
    Finescale strain parameterization (FSP) of turbulent kinetic energy dissipation rate has become a widely used method for observing ocean mixing, solving a coverage problem where direct turbulence measurements are absent but CTD profiles are available. This method can offer significant value, but there are limitations in its broad application to the global ocean. FSP often fails to produce reliable results in frontal zones where temperature–salinity (T/S) intrusive features contaminate the CTD strain spectrum, as well as where the aspect ratio of the internal wave spectrum is known to vary greatly with depth, as frequently occurs in the Southern Ocean. In this study we use direct turbulence measurements from Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) and glider microstructure measurements from Autonomous Sampling of Southern Ocean Mixing (AUSSOM) to show that FSP can have large biases (compared to direct turbulence measurement) below the mixed layer when physics associated with T/S fronts are meaningfully present. We propose that the FSP methodology be modified to 1) include a density ratio (Rρ)-based data exclusion rule to avoid contamination by double diffusive instabilities in frontal zones such as the Antarctic Circumpolar Current, the Gulf Stream, and the Kuroshio, and 2) conduct (or leverage available) microstructure measurements of the depth-varying shear-to-strain ratio Rω(z) prior to performing FSP in each dynamically unique region of the global ocean

    Reconciling float-based and tracer-based estimates of lateral diffusivities

    Get PDF
    Lateral diffusivities are computed from synthetic particles and tracers advected by a velocity field derived from sea-surface height measurements from the South Pacific, in a region west of Drake Passage. Three different estimates are compared: (1) the tracer-based “effective diffusivity” of Nakamura (1996), (2) the growth of the second moment of a cloud of tracer and (3) the single- and two-particle Lagrangian diffusivities. The effective diffusivity measures the cross-stream component of eddy mixing, so this article focuses on the meridional diffusivities for the others, as the mean flow (the ACC) is zonally oriented in the region. After an initial transient of a few weeks, the effective diffusivity agrees well with the meridional diffusivity estimated both from the tracer cloud and from the particles. This proves that particle- and tracer-based estimates of eddy diffusivities are equivalent, despite recent claims to the contrary. Convergence among the three estimates requires that the Lagrangian diffusivities be estimated using their asymptotic values, not their maximum values. The former are generally much lower than the latter in the presence of a mean flow. Sampling the long-time asymptotic behavior of Lagrangian diffusivities requires very large numbers of floats in field campaigns. For example, it is shown that hundreds of floats would be necessary to estimate the vertical and horizontal variations in eddy diffusivity in a sector of the Pacific Southern Ocean

    Enhanced diapycnal diffusivity in intrusive regions of the Drake Passage

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1309-1321, doi:10.1175/JPO-D-15-0068.1.Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate Δ estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on Δ and the buoyancy frequency.This work was supported by grants from the U.S. National Science Foundation.2016-10-0

    Shear turbulence in the high-wind Southern Ocean using direct measurements

    Get PDF
    Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639)

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
    corecore