70 research outputs found

    Antireflux Transoral Incisionless Fundoplication Using EsophyX: 12-Month Results of a Prospective Multicenter Study

    Get PDF
    BACKGROUND: A novel transoral incisionless fundoplication (TIF) procedure using the EsophyX system with SerosaFuse fasteners was designed to reconstruct a full-thickness valve at the gastroesophageal junction through tailored delivery of multiple fasteners during a single-device insertion. The safety and efficacy of TIF for treating gastroesophageal reflux disease (GERD) were evaluated in a prospective multicenter trial. METHODS: Patients (n = 86) with chronic GERD treated with proton pump inhibitors (PPIs) were enrolled. Exclusion criteria included an irreducible hiatal hernia > 2 cm. RESULTS: The TIF procedure (n = 84) reduced all hiatal hernias (n = 49) and constructed valves measuring 4 cm (2-6 cm) and 230 degrees (160 degrees -300 degrees ). Serious adverse events consisted of two esophageal perforations upon device insertion and one case of postoperative intraluminal bleeding. Other adverse events were mild and transient. At 12 months, aggregate (n = 79) and stratified Hill grade I tight (n = 21) results showed 73% and 86% of patients with >or=50% improvement in GERD health-related quality of life (HRQL) scores, 85% discontinuation of daily PPI use, and 81% complete cessation of PPIs; 37% and 48% normalization of esophageal acid exposure; 60% and 89% hiatal hernia reduction; and 62% and 80% esophagitis reduction, respectively. More than 50% of patients with Hill grade I tight valves had a normalized cardia circumference. Resting pressure of the lower esophageal sphincter (LES) was improved significantly (p < 0.001), by 53%. EsophyX-TIF cured GERD in 56% of patients based on their symptom reduction and PPI discontinuation. CONCLUSION: The 12-month results showed that EsophyX-TIF was safe and effective in improving quality of life and for reducing symptoms, PPI use, hiatal hernia, and esophagitis, as well as increasing the LES resting pressure and normalizing esophageal pH and cardia circumference in chronic GERD patients.Journal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing

    Get PDF
    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number

    Restricting retrotransposons: a review

    Get PDF
    corecore