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Abstract

Background: A good scoring function is essential for molecular docking computations. In conventional scoring
functions, energy terms modeling pairwise interactions are cumulatively summed, and the best docking solution is
selected. Here, we propose to transform protein-ligand interactions into three-dimensional geometric networks, from
which recurring network substructures, or network motifs, are selected and used to provide probability-ranked
interaction templates with which to score docking solutions.

Results: A novel scoring function for protein-ligand docking, MotifScore, was developed. It is non-energy-based, and
docking is, instead, scored by counting the occurrences of motifs of protein-ligand interaction networks constructed
using structures of protein-ligand complexes. MotifScore has been tested on a benchmark set established by others to
assess its ability to identify near-native complex conformations among a set of decoys. In this benchmark test, 84% of
the highest-scored docking conformations had root-mean-square deviations (rmsds) below 2.0 A from the native
conformation, which is comparable with the best of several energy-based docking scoring functions. Many of the top
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motifs, which comprise a multitude of chemical groups that interact simultaneously and make a highly significant
contribution to MotifScore, capture recurrent interacting patterns beyond pairwise interactions.

Conclusions: While providing quite good docking scores, MotifScore is quite different from conventional energy-based
functions. MotifScore thus represents a new, network-based approach for exploring problems associated with

Background

Drug design and discovery play a pivotal role in driving
research in computational chemistry and biology [1-6]. In
computational drug design and discovery, it is often nec-
essary to determine, as a first step, the binding of a ligand
to a target protein. The computational scheme for pre-
dicting ligand binding occurrence, affinity, and orienta-
tion is commonly referred to as "molecular docking",
which has been a topic of intensive research for decades
[6,7]. The development of a molecular docking tool usu-
ally starts with an efficient search algorithm, which places
the ligand in the active site of the target protein in numer-
ous different positions, orientations, and, in flexible
docking, conformations. These are then evaluated by a
scoring function to distinguish between good (near-
native) and bad (decoy) docking solutions. The two
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aspects of searching and scoring can be, and usually have
been, developed and evaluated separately, although one
clearly affects the other and a balance is often sought to
meet specific study aims [6,8,9].

Scoring functions for molecular docking are tradition-
ally either physics-based or knowledge-based [6,9] and
differ mainly in the derivation of the mathematical mod-
els used to compute the energies of molecular interac-
tions. Physics-based scoring functions employ a set of
molecular interaction terms to compute binding energies.
For example, the scoring function used in G-Score [10,11]
or AutoDock 3.0 [12] is based on the molecular mechan-
ics force field used in Tripos [13] or Amber [14], respec-
tively, and F-Score [15] and ChemScore [16] derive the
coefficients of their energy terms using regression analy-
sis of experimentally determined binding energies [17]. In
contrast, knowledge-based scoring functions, such as
PMF [18] and DrugScore [19,20], rely on statistical obser-
vations of preferred protein-ligand contacts, from which
binding energies are calculated.
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A common thread in these scoring functions is that,
with few exceptions, they all operate on the assumption
that the total interaction will be faithfully represented by
an additive summation over a series of pairwise interac-
tions between interaction centers, which are either real
(such as individual atoms) or imaginary (such as the geo-
metric center of a group of atoms). Despite fundamental
fallacies in this assumption, it has been adopted for many
years, as otherwise the problem would be intractable or
too computationally expensive to handle practically
[21,22].

In this study, we investigated a new idea for developing
a scoring function for molecular docking. The novelty of
the idea lies in the use of a network approach to identify
frequently occurring patterns of protein-ligand interac-
tions not in the form of pairwise interactions, but in the
form of network motifs, where "network" refers to a col-
lection of pairwise interactions. The motifs, which are
assemblies of multiple pairwise interactions between pro-
teins and ligands that are frequently observed in a data-
base of known protein-ligand complex structures, thus
represent energetically favorable ways of positioning a
ligand molecule in the active site of a protein. Such a
motif-based approach offers a new line of exploration for
research on molecular docking. As a first step in this line
of research, we present the construction of a motif-based
scoring function, called MotifScore, and the evaluation of
its ability to distinguish between good and bad docking
solutions. Our results using a benchmark dataset showed
that MotifScore performed well against a number of scor-
ing functions used in existing docking programs.

Methods

In constructing the protein-ligand interaction network,
the three-dimensional (3D) coordinates of a set of pro-
tein-ligand complexes were each transformed into an
atom-atom interaction network. There are two types of
nodes in the network, namely atoms (interacting centers)
from the protein and the ligand. Two nodes (one from the
protein and the other from the ligand) are connected by
an edge if their interaction is deemed significant by a dis-
tance threshold determined from a statistical analysis of a
dataset of protein-ligand complexes (see below). Interac-
tions between atoms within the protein or within the
ligand are not considered. These networks were then bro-
ken down into many interaction motifs representing sim-
ple units of the network with specific protein-ligand
interaction patterns.

Datasets

To establish distance thresholds for constructing the pro-
tein-ligand interaction network, we performed a large-
scale statistical analysis on a diverse set of known struc-
tures of protein-ligand complexes. The available protein-

Page 2 of 16

ligand complex structures as of January 10, 2006 in the
Protein Data Bank (PDB) [23] were screened. To simplify
our task, only those determined by X-ray crystallography
and with only one ligand molecule were selected. Fur-
thermore, those containing DNA/RNA molecules and
those in which the ligand binds to its target protein cova-
lently were discarded. Complexes containing a heme
group were also excluded because one may consider the
heme group as a part of the protein, rather than a ligand.
Solvent molecules and ions, such as chloride or ammo-
nium, that are often included to facilitate crystallographic
studies were not considered as ligands, whereas metal
ions such as zinc or calcium ion that are coordinated by
metal-binding amino acids were considered as an exten-
sion of the protein molecule, and their interactions with
ligand were considered part of the protein-ligand interac-
tion network constructed. In all, we obtained a total of
6,276 structures of complexes that could be used in the
statistical analysis.

This set of PDB protein-ligand complex structures is
not entirely non-redundant since a single protein or its
mutants may be co-crystallized with many similar com-
pounds, and, conversely, the same compound may be co-
crystallized with multiple homologous proteins. How-
ever, unless both the protein and the ligand are com-
pletely identical, part of the resulting interaction
networks can still be distinct, and as defining non-redun-
dant networks is not a straightforward task, we chose to
include as many network connectivities (i.e. protein-
ligand interactions) as possible while conducting normal-
izations to minimize the potential bias of using a redun-
dant dataset. Furthermore, analysis on a reduced set
(4,190 structures) by excluding those that share >25%
protein sequence identity and identical ligand showed
that the resulting network motifs and their grades
(defined below) had a Pearson's correlation coefficient of
0.95 with those of the set of 6,276 structures (data not
shown), suggesting that including homologous proteins
and identical ligand compounds would not significantly
affect the outcome of our analysis.

Besides the set of 6,276 structures, we used a subset of
the LPDB (Ligand-Protein DataBase) [24], which con-
tains decoys generated from molecular dynamics simula-
tions [8], to optimize the parameters of our scoring
function, MotifScore. There are more than 200 com-
plexes, each with a set of various numbers of decoys, in
the LPDB, but only 113 of these were used in this work
because we found that the ligand names, atom names,
and the ordering of atoms of many of the decoys in LPDB
were not the same as in the original data files in the PDB,
making it difficult for us to correctly assign their desig-
nated atom types (see below). For testing and evaluating
MotifScore, the data set of Wang et al. [9] was used. The
Wang dataset consists of a set of 100 protein-ligand com-
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plexes, each of which comes with 100 docked conforma-
tions (i.e. decoys) generated using AUTODOCK 3.0 [12].
Since Wang et al. have used this dataset as a benchmark
to evaluate a number of docking scoring functions [9,20],
we used it to compare the performance of MotifScore
with that of a number of other scoring functions.

Atom type assignment

Based on the work of others [18,25] and the chemical
properties of simple molecules, we created an atom type
classification scheme to describe protein-ligand interac-
tions. We defined a total of 23 atom types (Table 1), of
which 14 were for protein atoms and 20 for ligand atoms,
with many of them shared by both. The atom types were
identified by a 3-code name, or a 3-letter name for those
that did not need to be further classified, as they were rel-
atively rarely observed in our dataset of protein-ligand
complexes (e.g., metals, phosphorus, and halogens).
Some general rules for the 3-code names were as follows.

Table 1: Atom types and descriptions
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The 15t code was the name of the element (C, N, O, and S)
and the 2rd and 3t code indicated the surroundings and
electrostatic properties of the atom. The 214 code could
be 2, 3, R, or L, which, respectively, correspond to sp2 or
sp3 hybridization or inclusion in an aromatic ring or an
aliphatic chain. The 3t code could be B, N, A, D, B, E, or
C, which, respectively, correspond to polar, non-polar,
hydrogen bond acceptor, hydrogen bond donor, an atom
that can be both a hydrogen bond donor and acceptor or
either a hydrogen bond donor or acceptor, or a charged
atom. The ‘either (E)' code was associated with the atom
type NRE, which was used primarily for the two nitrogen
atoms on the imidazole ring of a histidine, as both of the
nitrogens can be either protonated (a hydrogen bond
donor) or deprotonated (a hydrogen bond acceptor). For
simplicity, the nitrogen of tryptophan, which is much
infrequently seen than histidine especially in the active
site, is also assigned the atom type NRE.

Atom type Description Exampleb On protein On ligand
C2N C, SP2, normal/non-polar -C=C- X
Cc2P C, SP2, polar -C=0 X X
C3N C, SP3, normal/non-polar -C-C- X X
3P C, SP3, polar -C-OH X X
CRN C, aromatic, normal/non-polar a benzene carbon X X
CRP C, aromatic, polar a halogenated aromatic carbon X X
02A 0O, SP2, hydrogen bond acceptor >C=0 X X
0O3A 0O, SP3, hydrogen bond acceptor C-0-C X
O3B O, SP3, both -OH X X
OLC 0O, aliphatic, charged -COO- X
ORA O, aromatic, hydrogen bond acceptor oxygen in furan X
NLA N, aliphatic, hydrogen bond acceptor -NR, X X
NLB N, aliphatic, hydrogen bond donor -NH; o0 X X
NLC N, aliphatic, charged -NH;* X
NRA N, aromatic, hydrogen bond acceptor a non-protonated aromatic nitrogen X
NRD N, aromatic, hydrogen bond donor a protonated aromatic nitrogen X X
NRE N, aromatic, either H.B. donor or nitrogen (protonated or not) of imidazole X

acceptor
S3N S, SP2, normal/non-polar -SH X X
SRA S, aromatic, hydrogen bond acceptor sulfur in an aromatic ring X
SLC S, aliphatic, charged -50,2 X
PHO Phosphorus X
MET Metala X
HAL Halogen F,Cl, Br, 1| X

aMetal ions, such as Zn, were considered in this work as an extended interaction site of the protein molecule.
bSee Fig. S3 in Additional file 1 for a representative chemical structure of the atom type CRN, CRP, ORA, NRA, NRD, NRE, and SRA.
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In our scheme, each individual atom is itself an inter-
acting center. For example, the chemical group PO,
would have four interacting centers: namely, one PHO
(phosphorus) and three OLC (charged oxygen). Others
have used pseudoatoms or pseudocenters (e.g., [26]),
such as the geometric center of a chemical group, which
may have the advantage of the resulting scoring function
being less sensitive to the exact interaction distances
used. On the other hand, chemical group centers do not
fully account for the complex interactions, including the
different interacting orientations, for example, of the con-
stituent atoms. The interaction network motifs derived
here represent a hybrid of both, since interactions are
computed on real atoms but the scoring function is a
non-energy-based network motif count, which does not
rely on a precise range of interaction distances (see
below). The interaction networks could also be con-
structed using pseudoatoms instead, but whether this
would yield better results remains to be investigated.

For an automated atom type assignment, for protein
molecules, we relied on standard PDB files, which have
conventional names and thus the implicit bonding infor-
mation for all protein atoms, and, for ligand molecules,
we relied on the het dictionary file on the PDB website
[23], which contains the complete naming and bonding
information of all the ligand molecules that appear in the
PDB files.

Determination of atom-atom interaction thresholds

Whether or not there is an interaction between two
atoms is determined by the energy produced by the inter-
action, which is affected by many variables, but mostly
the distance between the two atoms. To save computa-
tional time, most studies have used distance instead of
energy as the criterion to determine whether two atoms
interact. The threshold of distance for interaction could
greatly affect the complexity and outcome of a study, but
most knowledge-based docking studies seem to suggest
that a cutoff in the range of 4-6 A between heavy atoms
can achieve optimal performance [25]. However, a single
cutoff may not be sufficient for the present study,
because: 1) whereas conventional methods use a distance
cutoff to avoid the computation of the less significant
portion of interaction energies, we used the distance cut-
off merely to establish network edges, which, unlike con-
ventional scoring functions, do not involve a distance-
dependent energy computation; 2) in the absence of a dis-
tance-dependent energy function, clashes between two
interacting atoms cannot be prevented. In order to appro-
priately define atom-atom interactions (network edges),
we therefore introduced not only an upper distance
threshold for any pair of interacting atoms, but also a
lower one. As described below, the values of these thresh-
olds were determined by examining the distance distribu-
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tions of all protein-ligand atom pairs (a total of 14 protein
atom types x 20 ligand atom types, i.e. 280) in the 6,276
protein-ligand complex structures selected from the PDB.

Following the concept of radial distribution [27], we
analyzed the occurrence distribution of all atom type
pairs as a function of separation distance. For atom type
X, in order to determine the distance interval at which the
highest density of atom type pair x-y occurs (hence the
preferred interacting distance interval between x and y),
we divided the occurrence of y by the difference between
the cubes of the outer and inner radial distances from
atom x (for example, 32 - 23, when y is found between 2
and 3 A from x, which is proportional to the volume of
the shell within which y atoms are found). For normaliza-
tion, we also divided the occurrence of y atoms found in
this particular distance interval by the total occurrence of
y atoms in the 6,276 complex structures in the PDB. The
resulting distributions were quite distinctive from one
atom type pair to another. However, to a large extent,
they could all be characterized, albeit approximately, as
one of four categories, as summarized in Fig. 1.

The first category (Fig. la) featured a sharp peak at a
small distance, indicating a specific distance or a narrow
range of distances for contact (i.e. interaction) between
the two atom types. More than one-third of the atom type
pairs (86 out of 280) were classified in this category (see
Table S1 in Additional file 1). All of these are known to
exhibit specific interactions, such as hydrogen bonding,
salt bridge, and polar-polar interactions. Examples of this
category include hydrogen bonding pairs, such as NLB-
O2A and NLB-OLC, which represent a hydrogen bond-
ing interaction between a primary or secondary amine
(NLB) and a double-bonded oxygen (O2A) or charged
oxygen (OLC).

For the second category (Fig. 1b), the distribution curve
increased rapidly over a short span of distance, then
stayed fairly flat or decreased slowly over a wide distance
range. This type of distribution is indicative of the
absence of a strongly preferred distance for the two atom
types to contact each other. About half of the atom type
pairs (137/280) fell into this category. Most were for weak
interactions (80/137), such as C3N-C3N (two non-polar
sp3 carbon atoms) and CRN-CRN (two non-polar aro-
matic carbons), or for less well-defined interactions (57/
137) involving sulfuric or aromatic atom types, such as
S3N-CRP (a sp3 sulfur atom that is usually non-polar, but
may be deprotonated on rare occasions, interacting with
a polar aromatic carbon) and NRD-CRN (a hydrogen
bond donor nitrogen interacting with a non-polar aro-
matic carbon).

The distribution curve of the third category (Fig. 1c)
also began to rise after a short distance, but, unlike the
first two categories, rose quite slowly over a large dis-
tance. This indicates that the atom type pairs belonging
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Figure 1 Examples of the four categories of normalized distributions of protein-ligand interatomic distances. The four represent strong in-
teractions, weak interactions, non-specific interactions, and rare interactions (see text). Each is represented by a specific example, namely: a) a hydro-
gen bonding contact in the interaction of NRD with OLC; b) a van der Waals contact in the interaction of C2N with CRN; ¢) a non-specific contact in
the interaction of C3N with C2P; and d) a rarely seen contact in the interaction of NLC with S3N. The red arrows mark the upper and lower distance
cutoffs used to connect atoms in constructing the protein-ligand interaction networks: those separated by a distance within the upper and the lower
threshold would be connected, while no connection was made for the non-specific interactions in the third category.

to this category rarely see each other at short distances.
The few occurrences observed at short distances are
likely to be a result of an attraction owing to adjacent
atoms that are chemical-bonded to the atom in question.
Thirty-eight atom type pairs were classified into this cate-
gory, which typically exhibited an interaction between a
non-polar atom and a polar atom or between two polar
atom types with the same polarity, such as C2N-C2P (a
non-polar sp2 carbon interacting with a polar sp2 car-
bon) and NLC-NRD (a charged nitrogen interacting with
a hydrogen bond donor nitrogen).

The fourth category (Fig. 1d) showed a noisy curve that
did not display an easily identifiable pattern, which may
indicate insufficient data, as they usually contained an
atom type of rare occurrence, such as halogen in HAL-
NLB and metal in NLC-MET. There were 19 atom type
pairs in this category.

A common observation for the first three categories of
atom type pairs was a zero occurrence when the distance
was short enough, suggesting that a distance threshold
could be established and that only above this could
attraction overcome repulsion, allowing the pair to be
observed. In addition, the occurrence distribution curves
of the first two categories fell after reaching a peak, dis-
playing a specific upper threshold. The third category did
not need an upper threshold, since its atom type pairs
preferred not to contact each other. For the fourth cate-
gory, we decided to use 4A and 2A as the upper and lower
threshold values, which are arbitrary choices, but are
within the range determined for the other three catego-
ries of interaction. For other rarely observed atoms, such
as boron, that are not defined in our simple set of 23 atom
types (Table 1), the arbitrarily chosen thresholds of the
fourth category along with the associated network motifs
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can be applied to them to facilitate subsequent computa-
tions.

Despite the common main features, these occurrence
distribution curves were not smooth, making an auto-
mated determination of thresholds difficult, so we manu-
ally inspected the data and recorded the lower and upper
thresholds for each of the 280 atom type pairs. In all, the
upper thresholds thus determined ranged from 3A to
5.6A and the lower thresholds from 1.2A to 4A. (see Table
S1 in Additional file 1).

Construction of protein-ligand interaction networks

With the upper and lower thresholds for all the interac-
tions determined, we then constructed protein-ligand
interaction networks using the following procedures: 1)
carrying out atom type assignment on the atoms of the
protein and ligand (hydrogen atoms were not considered
in this work), 2) checking all the protein-ligand inter-
atomic distances against the distance thresholds of the
corresponding atom type pairs, and 3) connecting those
that met the thresholds and ignoring those that did not.
As an example, Fig. 2 shows a 2D representation of the
3D protein-ligand interaction network constructed for
the complex of carboxypeptidase A and I-benzylsuccinate
(PDB entry 1cbx).

Motif searching and development of MotifScore

The next step was to identify motifs from the total of
6,276 protein-ligand interaction networks constructed as
described above. While a number of algorithms for dis-
covering network motifs have been reported [28-32], they
could not be easily adopted here because the protein-
ligand interaction networks constructed in this study are
a bipartite network, which is different from the conven-
tional gene-gene or protein-protein interaction networks,
in which there is usually only one type of node and for
which the existing motif identification algorithms have
usually been developed. Moreover, since there were only
23 atom types, a number much smaller than the number
of interacting atoms, many nodes within the same pro-
tein-ligand network were indistinguishable, which is
quite different from the situation in other biological net-
works, where a node usually does not occur more than
once in the same network.

In the total of 6,276 protein-ligand interaction net-
works constructed, the largest number of protein atoms
connected to a ligand atom was 17. Thus, a network motif
involving just one ligand atom would be those connecting
1 (ligand atom) to 2 (protein atoms), 1 to 3,..., up to 1 to
17. However, mathematically, of these "1 interacting with

n" motifs, the number of those connecting to 7 or 8 pro-
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Figure 2 A protein-ligand interaction network. This example
shows the protein-ligand interaction network transformed from the
3D coordinates of the complex of carboxypeptidase A and I-benzylsuc-
cinate (PDB entry 1cbx). Each ligand atom in this network is represent-
ed by a combination of a red circle, its 3-code atom type, and its atom
name from the PDB file in the parenthesis. Likewise, each protein atom
is represented by a combination of a blue circle, its 3-code atom type
and, in parentheses, its residue name, residue number, and atom name
from the PDB file. Each black line connects a ligand atom and a protein
atom for which connectivity (interaction) has been established based
on distance thresholds.

tein atoms would be the largest (i.e. C5’ and Cg’ >>all
other C}C7). In the actual data, the 1 interacting with 7
and 1 interacting with 8 motifs indeed dominated the 1
interacting with n motifs (data not shown), and, because

the number of 1 interacting with 7 and 1 interacting with

8 motifs was so huge, the other types of motifs became
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negligible and a scoring function based on these would be
severely biased to the 1 interacting with 7 and 1 interact-
ing with 8 motifs. Consequently, we decided to search for
other simple motifs, such as those of 2 ligand atoms inter-
acting with 3 protein atoms, where the scoring function

would not be severely biased to a particular type of motif.

There are four distinctive topologies of the 2 ligand
atoms interacting with 3 protein atoms motifs, as shown
in Fig. 3. In all, we obtained 395,240 such interaction
motifs, the large number arising from the numerous com-
binations of the 23 atom types (Table 1) that could be
assigned to the five constituent atoms.

For various reasons, other simple motifs were not
included in MotifScore: the 1 interacting with 2 and 2
interacting with 1 motifs are likely to occur randomly, as
they contain only two connections; there was a compara-
tively very small number of 3 (ligand atoms) interacting
with 1, 3 interacting with 2, and 3 interacting with 3
motifs due to the small number of ligand atoms that can
simultaneously interact with protein atoms under our
interaction criteria; and, for the 2 interacting with 2 and 1
interacting with 3 motifs, no significant difference in the
performance of MotifScore was seen when they were
included (data not shown).

Intuitively, without the guidance of energy computa-
tion, a network motif-based scoring function stipulates
that the presence of more motifs implicates better inter-
actions (i.e. better docking solutions). However, in devel-
oping MotifScore, we immediately faced two major
difficulties: 1) as mentioned, due to the large number of
combinations of atom types, even the simple 2-3 network
topologies (Fig. 3) harbored a large number of distinctive
motifs which should not all be counted equally, because,
for instance, some motifs consist of more frequently
occurring atom types than others; 2) if the ligand mole-
cule was pushed into the binding site to make more con-
tacts with the protein, new motifs would be created and
some of the old motifs removed, but the rate of increase
would far outweigh the rate of loss. To overcome these
difficulties, MotifScore was consequently made a compos-

SRERE

Figure 3 Four distinctive types of simple motifs considered in this
work. The four have different connection topologies: 2 red nodes (li-
gand atoms) interacting with 3 blue nodes (protein atoms) with 4, 5, or
6 connections. The interactions are symbolized by the black lines.
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ite of two opposing components, Gain and Penalty, with
Gain being a sum of the normalized motif counts and
Penalty being a factor using number of clashes between
ligand and protein atoms to avoid motif overcounting, as
described below.

In Eq. 1 we define, for each of the total 395,240 motifs, a
significance grade, SG, which reflects the relative impor-
tance of a specific motif in the network.

OM;/N;
5

[T (OA}/Mj)
j=1

SG; =log (1)

where OM; denotes the occurrence of a specific motif
in the 6,276 protein-ligand interaction networks con-
structed from the complex structures in the PDB; motif i
is one of 395,240 motifs, each of which consists of 5
atoms, 2 on the ligand and 3 on the protein, and of 4-6
network edges, depending on which of the four motif
types (Fig. 3) motif i belongs to; N;is the number of
motifs having the same motif type as motif i; OA; denotes
the occurrence of atom type j (one of 14 protein atom
types or 20 ligand atom types; see Table 1) in the 6,276
networks, where atom type j (j = 1,5) is the atom type
assigned to one of the 5 atoms constituting motif i; and
M; is either M, or M, (M, if atom type j is a ligand atom
and M,,if atom type j is a protein atom), where M, (M,)) is
the total number of ligand (protein) atoms.

Using normalization by the total occurrence of each
motif type and the relative occurrence of each atom type,
Eq. 1 takes into account the fact that motifs consisting of
fewer edges or more prevalent atom types are likely to
occur more often. With Eq. 1, a motif's SG would not
necessarily increase in a larger dataset of protein-ligand
complex structures in which motif occurrences are
bound to increase. Because each motif's SG reflects the
probability of the motif occurring in the interaction net-
work, the probability of it occurring simultaneously with
other motifs should be a multiplication of all their SGs.
For easier computation, motif SG was log transformed to
convert multiplication into addition.

To score a specific protein-ligand interaction network,
i.e. a specific protein-ligand complex conformation, the
Gain component (Eq. 2) of MotifScore is the sum of the
motif SG (Eq. 1) for all the motifs found in this specific
network, or the particular protein-ligand binding confor-
mation from which the network resulted.

Gain = 2::1 SG, )
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where SG, is the motif significance grade (Eq. 1) for the

kth motif found in the specific network constructed from
a specific docking solution, and # is the total number of
motifs present in this network.

As mentioned earlier, we need a penalty to counteract
the excessive motif gains of a growing interaction net-
work that may occur in docking when one places the
ligand molecule closer and closer to its protein receptor.

Penalty = W x NC (3)

In Eq.3, NC denotes the total number of clashes
between ligand and protein atoms, where one clash is
counted when the distance between two atoms, one each
from the protein and ligand, is less than the lower thresh-
old of their atom type pair (see Fig. 1) and weight W is a
parameter to be optimized against a subset of LPDB,
which served as a training set, as described above. The
value of 10 for Wappeared to yield the best result, though
the results were not very sensitive to the value of this
parameter (Fig. S1 in Additional file 1). A second parame-
ter was also introduced to adjust the lower distance
thresholds of the interacting atom type pairs for best fit of
the training data. As described earlier, the lower thresh-
olds were determined based on the observed distribution
of interatomic distances. However, at a distance barely
exceeding the lower threshold, the probability of observ-
ing the atom type pairs in the native structures is rather
low, whereas, when evaluating the conformations pro-
duced in the docking process, for any distance that was
above the lower threshold, even just barely, a connection/
interaction would be made and it would contribute to
motif Gain. In order to reflect this reality better, we mod-
ified the lower distance thresholds by a factor and found
that better results could be obtained when the lower dis-
tance thresholds for computing the Gain component
were raised by 10 percent compared to those used to
compute Penalties (Fig. S2 in Additional file 1), though,
like the Penalty weight W (Fig. S1 in Additional file 1), the
results were not very sensitive to the value of the lower
threshold factor used (Fig. S2 in Additional file 1).

Finally, after experimenting with several different com-
posite formulae, we settled on one with a ratio for Motif-
Score (Eq. 4), which yielded the best results.

MotifScore = _Gain_ (4)
Penalty+1

Results and Discussion
Scoring docking solutions
As in many related studies, we evaluated the performance
of MotifScore using the criteria of distance rmsd (root-
mean-square-deviation) between the experimentally
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observed ligand positions and those of the highest-scored
docking solution to consider whether the scoring was a
success or a failure. We used two docking datasets, one by
Brooks et al. [8] for parameter optimization (Fig S1,S2 in
Additional file 1) and the other by Wang et al. [9] for per-
formance comparison with 12 other scoring functions
(Table 2). Our success rate using the criterion of rmsd %2
A was 84% for both the parameter optimization set (Fig.
S1 and S2 in Additional file 1) and Wang's benchmark test
set (Table 2). As shown in Table 2, compared to other
scoring functions, MotifScore performed admirably, being
second only to DrugScore®sP [20]. DrugScore©sP is a sig-
nificantly improved version of DrugScore’®® [19]. Drug-
ScorePPB was developed based on the PDB and
DrugScoreCSP was developed based on the Cambridge
Structural Database (CSD) [33], which is a higher-resolu-
tion data source for contact distances between interact-
ing atoms, a difference thought to underlie the
improvement [20]. Whether MotifScore can be similarly
improved using the CSD instead of the PDB remains to
be determined, but the effect may not be as significant as
in DrugScoreCsP, as it is likely that the network motif-
based scoring (Eq. 1-4) cannot be fine-tuned as much as a
conventional energy-based scoring function, such as that
used by DrugScoresD. Nevertheless, it is encouraging
that, despite its present crude form, MotifScore per-
formed surprisingly well and therefore can serve as a
non-conventional alternative to existing scoring func-
tions, being useful especially for coarse-grained docking
computations.

The 100-complex dataset of Wang et al. [9] had also
been divided into subsets of hydrophilic, mixed, and
hydrophobic complexes to evaluate potential bias of scor-
ing functions on different types of molecular interactions.
As summarized in Table 3, MotifScore achieved a very
high success rate of 91% on both the hydrophilic and
mixed subsets, but, like many other scoring functions,
including DrugScorePPB (result for DrugScoreCSP not
available), its performance was relatively poor for the
hydrophobic subset. The less favorable result for the
hydrophobic subset is thought to be due to several diffi-
cult cases in this subset in which the binding site is shal-
low and hard to score accurately [9], compounded by the
fact that the number (24) of complexes in this subset is
much smaller than in the other two subsets, which means
that the success rate would drop by as much as 4% if the
number of correctly predicted complexes was reduced by
only one.

Some significant motifs

To elucidate which of the hundreds of thousands of
motifs make the greatest contribution to MotifScore, we
ranked them by their motif SG. The top 30 motifs are
listed in Table 4. All contain aromatic and/or polar
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Table 2: Docking scoring success rates for different scoring functions.2

Scoring function Success rate (%) using different rmsd criteria®
%1 A %2 A %3 A

DrugScorecsb 83 87 *c
MotifScore 71 84 86
Cerius2/PLP 63 76 80
SYBYL/F-Score 56 74 77
Cerius2/LigScore 64 74 76
DrugScorePPB 63 72 74
Cerius2/LUDI 43 67 67
X-Score 37 66 74
AutoDock 34 62 72
Cerius2/PMF 40 52 57
SYBYL/G-Score 24 42 56
SYBYL/ChemScore 12 35 40
SYBYL/D-Score 8 26 41

aThe data were taken from Wang et al. [9] and Velec et al. [20], except for the MotifScore results, which were computed in this work using the

same dataset.

bScoring functions are ranked by their success rates at rmsd % 2.0 A (the success rate of a scoring function is calculated by checking if the
rmsd value of the highest-scored conformation is less than, or equal to, the specified rmsd criterion from the experimentally observed

conformation.)
“Not provided by Velec et al. [20]

(including charged) atom types on the protein side. This
agrees well with the observation that the frequently
observed catalytic residues of proteins are generally the
residues with aromatic, polar, or charged side-chains

[34,35]. In addition, although cysteine occurs less often
than other amino acids in proteins, it is relatively
enriched in catalytic residues [35]. The sulfur atom of
cysteines, assigned as S3N, was also commonly observed

Table 3: Success rates of different scoring functions on subsets of different types of molecular interactions

Scoring function

Success rate (%)

Overall (100) Hydrophilic (44) Mixed (32) Hydrophobic (24)
MotifScore 84 91 91 63
Cerius2/PLP 76 77 78 71
SYBYL/F-Score 74 75 75 71
Cerius2/LigScore 74 77 75 67
DrugScorePPB 72 73 81 58
Cerius2/LUDI 67 75 66 54
X-Score 66 82 59 46
AutoDock 62 73 53 54
Cerius2/PMF 52 68 44 33
SYBYL/G-Score 42 55 34 29
SYBYL/ChemScore 35 32 34 42
SYBYL/D-Score 26 23 28 29

The data were taken from Wang et al. [9], except for MotifScore. The success rates were determined using rmsd % 2.0 A.
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Table 4: Top 30 protein-ligand interaction network motifs ranked by motif significance grades, SG.

Rank Ligand atom Protein atom Occurrence Significance Motif type
types types grade

1 HAL, HAL CRN, S3N, S3N 31 11.79 5 connections

2 C2N, ORA NRE, S3N, S3N 1 11.69 5 connections

3 HAL, HAL S3N, S3N, S3N 6 11.67 4 connections, 2+2
4 C2N, ORA CRP, S3N, S3N 1 10.89 5 connections

5 NRA, NRA CRN, CRN, NRE 1597 10.71 Fully connected

6 HAL, HAL NRE, O3B, S3N 5 10.62 5 connections

7 CRN, ORA CRN, CRN, CRN 374 10.57 Fully connected

8 C2N, ORA S3N, S3N, NRE 1 10.55 4 connections, 2+2
9 CRN, NLC CRN, CRN, CRN 2372 10.54 Fully connected
10 CRP, NRA CRN, CRN, CRP 5236 10.49 Fully connected

1 C2N, ORA NRE, S3N, NLB 1 10.40 5 connections

12 NRA, NRA CRN, CRN, CRP 2572 10.40 Fully connected
13 CRP, NRA CRN, CRP, CRP 1227 10.36 Fully connected

14 C2N, C2N CRN, CRN, NRE 66 10.29 Fully connected
15 HAL, HAL CRP, 03B, S3N 8 10.29 5 connections

16 HAL, NLC CRN, S3N, S3N 25 10.28 4 connections, 3+1
17 NRA, NRA CRN, NRE, NRE 125 10.28 Fully connected
18 NRA, NRA CRN, CRP, NRE 259 10.22 Fully connected
19 HAL, HAL S3N, CRN, S3N 27 10.20 4 connections, 3+1
20 CRN, NLC CRN, CRN, CRP 450 10.20 Fully connected

21 HAL, HAL CRN, O3B, S3N 2 10.17 Fully connected
22 CRN, CRN CRN, CRN, CRN 37501 10.12 Fully connected
23 CRP, CRP CRN, CRP, CRP 1676 10.05 Fully connected
24 HAL, HAL S3N, NRE, S3N 2 10.03 4 connections, 2+2
25 HAL, NLA S3N, S3N, NLC 2 10.01 5 connections

26 NRA, NRA CRN, CRN, CRN 6605 10.01 Fully connected
27 HAL, NLC CRN, S3N, NLB 50 10.00 4 connections, 2+2
28 HAL, HAL CRN, S3N, S3N 14 9.86 4 connections, 2+2
29 HAL, HAL CRN, CRN, CRN 68 9.86 Fully connected
30 HAL, NLC CRN, S3N, NLC 50 9.82 4 connections, 2+2

The occurrences were counted in the 6,276 protein-ligand complex structures used to construct the networks (see Methods). See Fig. 3 for

the different motif types.

in our top-ranked motifs. Similarly, there is a relatively
small number of halogens in protein binding ligands, but,
when present, these atoms usually play a key role in pro-
tein-ligand interactions. The normalized motif count, or
SG, reflects the significance of these halogens: atom type
HAL-containing motifs appear several times in the top 30
motifs even though their occurrences are small.

Fig. 4a-d illustrate four of the top 30 ranked motifs
observed in the 6,276 protein-ligand complexes. The four
examples all exhibit interactions between aromatic atom
types. As can be seen, these motifs are a composite of

multiple pairwise interactions between two ligand inter-
acting sites (atoms) and three protein atoms from one (c
and d), two (b), or three (a) amino acid residues. Interest-
ingly, in Fig. 4b-d, the aromatic rings of the ligand and of
the amino acid side-chains stack against each other, form-
ingm-minteractions [36]. These ring-stacking interactions
are not easily modeled by conventional scoring functions
using separate accounts of pair-wise interactions, but,
collectively, they emerge as significant motifs in protein-
ligand interaction networks.
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Figure 4 Four significant motifs involving interactions between
aromatic rings. Ligand molecules are shown as line model and pro-
tein side-chains as stick model. The green lines show the connectivities
(edges) of the motifs, which, in these examples, are a 2 (ligand atoms)
interacting with 3 (protein atoms) fully connected motif. (@) (NRA, NRA)
interacting with (CRN, CRN, CRP): 2 ligand atoms interacting with 3 pro-
tein atoms located on 3 different aromatic residues; (b) (NRA, NRA) in-
teracting with (CRN, CRP, NRE): 3 protein atoms located on 2 aromatic
residues and the aromatic ring of histidine is parallel to that of adenine
in the ligand; (c) (CRN, ORA) interacting with (CRN, CRN, CRN): all 3 pro-
tein atoms located on 1 residue, tyrosine; (d) (CRN, CRN) interacting
with (CRN, CRN, CRN): this motif is the most prevalent motif (in num-
ber) and is ranked 22nd (by significance grade) in Table 4.

Binding site-enriched protein triangles

Since all of the protein-ligand interaction motifs in our
model contain 3 protein atoms, we wondered whether the
chance of observing three spatially close protein atoms
simultaneously was quite different in the ligand-binding
site compared to the rest of the protein. To answer this
question, we computed a binding site enrichment factor,
F,, using Eq. 5, for every distinguishable group of three
protein atom types captured in our 2 interacting with 3
ligand-protein interaction motifs. For convenience, we
called the three protein atoms a protein triangle. Note
that, as protein triangles are distinguished by the atom
types assigned to their three constituent atoms, they are
atom type triangles.

ng/n
Ng/N

b= (5)

Eq. 5 was adopted here based on the work of Zeeberg
et. al. [37], where n,and N, are the occurrences of a spe-
cific atom type triangle found, in, respectively, the inter-
action network and the whole protein and # and N are the
corresponding total number of atom type triangles. To
count the triangles not only in the binding site, but also in
the whole protein, we searched for those with all three
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sides longer than 2 A and two less than 10 A and the
other less than 13 A, which would account for almost all
(>99.5%) of the triangles present in the protein-ligand
interaction motifs identified. Theoretically, with 14 pro-
tein atom types and taking repetition into account, we
should have a total of 560 different atom type triangles.
However, as metal ions rarely occur in our dataset of pro-
tein structures and almost all of those that do are
involved in ligand binding, the F;s for metal-containing
triangles were extremely large. They were therefore
excluded in the discussion below, leaving 455 non-metal
triangles to be ranked and sorted by their F;, (see Table S2
in Additional file 1).

The binding site enrichment factor F, represents a pro-
tein triangle's propensity for occurring in the protein-
ligand interaction networks constructed, or, in other
words, the ligand-binding sites. As shown in Fig. 5, such
propensity is far from uniform, and, in fact, the distribu-
tion resembles that observed for a wide spectrum of bio-
logical properties: the distribution of F, tended to follow a

power law distribution [38], y~xY(ywas estimated to be
1.095, r2 = 0.89), suggesting that only a handful of trian-
gles were highly enriched in ligand-binding sites, while
most showed little or no propensity [223/455 (49%) had
an F; below 2 and 101 (22%) below 1]. Some low fre-
quency triangles appear to be concentrated at ligand-
binding sites. For example, the NRE-NRE-NRE triangles,
which are triangles that connect 2 or 3 different histidines
(there were few NREs from tryptophan in our motifs),
were not commonly observed, but, when they were, they
tended to be at ligand-binding sites (their F, was 17.3).
The uneven distribution of F,, (Fig. 5), which was normal-
ized to account for the wide range of occurrences of these
triangles (Eq. 5), suggests that F), does not necessarily cor-
relate with binding site occurrence (Fig. 6), although tri-
angles with a high F, tended to occur less frequently in
other parts of the protein (Fig. 7). Many of the highly
enriched triangles were constituents of the top-ranked
motifs (Table 4, 5) that were major contributors to the
MotifScore. Consequently, as can be seen from Fig. 8, tri-
angles with higher F, values also tended to form motifs
with a higher SG (Eq. 1); the correlation between the two
was significant, with the Spearman correlation coefficient
being 0.78.

Interestingly, Table 5 shows that some of the binding-
site enriched protein triangles consisted of 3 charged or
polar atom types with the same positive (or partially posi-
tive) or negative (or partially negative) charge. For exam-
ple, the most enriched triangle consisted of 3 NLCs,
which are nitrogen atoms with a positive charge on lysine
or arginine residues. The reason why these positively
charged amino acids, which are spatially close, as they



Xie and Hwang BMC Bioinformatics 2010, 11:298
http://www.biomedcentral.com/1471-2105/11/298

Page 12 of 16

70

50 |

40

Fb

30 0 1 2 3
log (Rank of Triangles)

20

10

1 101 201 301 401
Triangles (Ranked by Fb)

Figure 5 Uneven distribution of the binding-site enrichment factors (F,) for 455 protein atom type triangles. The insert shows the fitting of
the distribution to a power-law expression, y~x~, withyestimated to be 1.095 (r2= 0.89) for the best fit.

form the triangle, are enriched in the active site is proba-
bly because they all interact with the ligand molecule at
the same time.

As shown in Table 5, the top 30 binding site-enriched
triangles were generally composed of atom types (namely,
CRP, NRE, NLC, NLB, OLC, O3B, and S3N) that exist on
the side-chains of the amino acids histidine, lysine, argin-
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Figure 6 Occurrences of protein atom type triangles in protein-li-
gand interaction networks (i.e. ligand binding sites) do not corre-
late well with binding site enrichment factors. The protein atom
type triangles are ranked by the binding site enrichment factor £,

Figure 7 Occurrences of protein atom type triangles in the whole
protein show trend with binding site enrichment factors. The pro-
tein atom type triangles are ranked by the binding site enrichment fac-
tor .
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Figure 8 Binding site enrichment versus significant grade. The
scatterplot shows the relationship between the binding site enrich-
ment factor F, for protein triangles versus the average significance
grade (SG, Eq. 1) for the triangle-containing motifs. The correlation be-
tween the two has a Spearman correlation coefficient value of 0.78.

ine, asparagine, aspartic acid, glutamic acid, glutamine,
serine, tyrosine, threonine, and cysteine. A survey by Bar-
lett et. al. [34] found that, of the 20 amino acids, only
these 11 polar and charged residues are directly involved
in catalytic reactions. Gutteridege and Thornton [35] fur-
ther proposed that histidine is the most commonly
observed and most important residue in protein enzy-
matic reactions, followed by, in descending order of
observance, cysteine, the charged residues glutamate,
aspartate, arginine, and lysine, and, finally, the polar resi-
dues serine, threonine, tyrosine, glutamine, and asparag-
ine. This is fairly consistent with our statistics on the
ligand-binding site enrichment: Of the 30 protein trian-
gles that were most enriched in ligand-binding sites, CRP
(on residues with polar and aromatic side chain, including
histidine) was the most commonly observed atom type,
while NLC (on lysine or arginine), NRE (primarily on his-
tidine), and OLC (on aspartic acid or glutamic acid) were
also frequently observed, and NLB (on glutamine or
asparagines) and O3B (on serine, threonine, or tyrosine)
on polar residues were observed less often. Unlike in
Table 4, S3N (on cysteine) appeared only once in Table 5.
This can be explained by the fact that whereas every pro-
tein triangle in Table 5 is unique, the same triangle can
appear multiple times in Table 4 together with different
interacting ligand atoms and/or in different motif topolo-
gies (Fig. 3).

Many of the binding site-enriched triangles are com-
posites of multiple residues. For example, many of the
NRE-NRE-OLC triangles were composed of two histi-
dines and a carboxylate residue, corresponding to the 2-
His-1-carboxylate facial triad, a characteristic motif of a
metalloenzyme superfamily [39]. Similarly, many of the
NRE-NRE-NRE triangles were composed of three histi-
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dines, known as the histidine triad of the nucleotide-
binding histidine triad superfamily [40,41]. Interestingly,
while only 28 and 2 protein structures were annotated by
PDB [23] as having, respectively, a histidine-triad or a 2-
His-1-carboxylate facial triad in the 6,276 protein-ligand
complex structures we analyzed, roughly 2% and 5% of
these proteins contain NRE-NRE-NRE (on 3 different
histidines) and NRE-NRE-OLC (on 2 histidines and an
aspartic/glutamic acid) atom type triangles in their
ligand-binding sites, respectively. Although these pro-
teins may not be members of the histidine triad super-
family or the 2-His-1-carboxylate facial triad superfamily
per se, the much higher prevalence than previously rec-
ognized of these motifs may guide future investigations to
identify conserved catalytic mechanisms in diverse
enzyme families.

Issues and prospects of MotifScore
Although MotifScore has been derived using static crys-
tallographic structures of protein-ligand complexes, the
use of non-precise interaction distances and counts of
number of motifs instead of interaction energies likely
renders it more tolerant to subtle conformational changes
in protein or ligand than are conventional energy-based
scoring functions, which are known to be sensitive to
steric clashes especially in unbound dockings [7,42]. The
results on both the LPDB and Wang's dataset attest the
ability of MotifScore to account for at least ligand flexibil-
ities, since the ligands, though not the proteins, in the
decoys of both sets include flexible conformations gener-
ated by molecular dynamics simulation and genetic algo-
rithm, respectively. Nevertheless, the performance of
MotifScore in dockings that sample different protein con-
formations (e.g. [42]) requires further examinations.
MotifScore can be regarded as a kind of knowledge-
based scoring function since it was also derived by
extracting information from a statistical analysis of
known protein-ligand complex structures. However,
MotifScore is different from conventional knowledge-
based scoring functions such as PMF and DrugScore [18-
20] in at least two aspects: 1) it is non-energy based, and
2) using the interaction network motifs, it can score
directly on the 3D interaction patterns of molecular rec-
ognition conserved in protein ligand complexes. One dis-
advantage of MotifScore, however, is that a non-
conventional search scheme may need to be developed to
take advantages of its unique features, as discussed next.
As MotifScore is non-energy-based, it was of interest to
examine the landscape of its functional values. We found
that MotifScore did not correlate well with experimentally
determined binding affinities, the Spearmen correlation
coefficient between the two being only 0.259, only better
than that (0.141) of AutoDock among the various scoring
functions evaluated by Wang et al. [9]. Nevertheless, Fig.
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Table 5: Top 30 protein atom type triangles ranked by their binding site enrichment factor F,.

Rank Triangle F, Coverage%?* (binding site) Coverage%?* (whole protein)
1 NLC-NLC-NLC 70.6 13.2 93.7
2 CRP-CRP-CRP 61.9 233 96.6
3 CRP-NLC-NLC 47.2 16.6 98.0
4 CRP-CRP-NLC 44.3 20.1 97.7
5 CRP-CRP-OLC 38.1 226 98.3
6 NLC-NLC-NRE 328 8.2 95.7
7 CRP-CRP-NRE 317 16.8 93.6
8 CRP-CRP-O3B 29.8 26.4 98.2
9 NLC-NLC-O3B 29.6 16.3 98.6
10 CRP-CRP-NLB 26.2 19.8 98.1
1 CRN-CRP-CRP 26.2 324 98.5
12 CRP-OLC-OLC 25.8 21.0 98.8
13 NLB-NLC-NLC 24.6 20.3 98.9
14 CRP-NRE-OLC 235 154 97.6
15 CRP-NLC-03B 235 19.1 98.3
16 CRP-NLC-NRE 23.0 12.1 96.9
17 NRE-OLC-OLC 19.9 125 97.9
18 CRP-NRE-NRE 19.7 9.0 89.4
19 CRP-NLB-NLC 19.2 17.2 98.3
20 NLC-03B-O3B 18.6 14.2 98.5
21 NRE-NRE-OLC 18.1 83 96.7
22 CRN-NLC-NLC 17.5 174 98.6
23 NRE-NRE-NRE 173 4.2 77.3
24 OLC-OLC-OLC 17.0 13.0 98.4
25 CRP-NLC-OLC 17.0 15.9 98.3
26 CRN-CRN-CRN 16.9 414 99.0
27 CRP-CRP-S3N 16.8 53 93.6
28 NLC-NRE-NRE 16.7 6.1 94.2
29 CRN-CRN-CRP 16.5 376 98.9
30 C3P-NLC-NLC 16.2 335 98.9

*Coverage: The percentage of protein-ligand complexes (out of the 6,276 complexes) in which a specific triangle was present in the ligand-

binding site or the whole protein.

9 shows that, for a typical success case, MotifScore could
easily distinguish reasonably good docking solutions
(rmsd < 2 A) from bad ones. Intriguingly, there appears to
be a very narrow funnel leading to the native state formed
by very good docking solutions. This is quite distinct
from that of a conventional energy-based scoring func-
tion where the funnel leading to the energy minimum,
which should be reasonably close to the native state, is
usually much smoother [43]. This implies that, whereas a
search algorithm, such as a genetic algorithm, may work
efficiently with a conventional, energy-based scoring
function to find good docking solutions, its direct adop-

tion for use with MotifScore would not be ideal. On the
other hand, the protein-ligand interaction motifs derived
in this work, in their three dimensional arrangements of
interacting atoms, capture the spatial arrangements of
reasonably good docking solutions, so it is quite possible
to develop a scheme to look up the table of interaction
network motifs (e.g. Table 4) and directly home in on a
reasonable docking solution based on the structure of a
few top-ranked motifs. This could eliminate the time-
consuming searching computation needed in conven-
tional docking methods, or at least provide a good start-
ing solution for further refinement. In addition, although
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Figure 9 The lanscape of MotifScore. The scatterplot shows the
landscape of MotifScore values for a typical success case (PDB code
1APB). The 100 docking solutions (decoys), marked by triangles, were
taken from Wang's dataset and the square represents the native com-
plex conformation.

MotifScore is currently limited to scoring the interactions
between protein and small molecules, the same network-
based approach should be extendable to protein-protein
and protein-DNA/RNA interactions, which form con-
served spatial and chemical binding patterns (e.g.,
[44,45]). Work along these lines is currently undergoing
in our laboratory.

Conclusions

MotifScore is a novel interaction-motif-based scoring
function for protein-ligand docking. Despite the absence
of mathematical models to mimic the force field of
molecular interactions, MotifScore performed well in dis-
tinguishing between good and bad docking solutions in a
benchmark test set. Furthermore, owing to the network
approach, MotifScore is intrinsically more able than con-
ventional docking scoring functions to capture interac-
tions involving more than two interacting sites, the m-n
stacking of two aromatic rings being a prime example.
The ligand-binding site-enriched interaction motifs iden-
tified are in accord with existing knowledge on protein-
ligand binding and may prove useful for binding site pre-
dictions. Finally, the three-dimensional protein-ligand
interacting motifs could provide very good templates for
placing ligand molecules in fast, though coarse, protein
docking computations.

Availability and requirements

The source code of MotifScore is available for download
at: https://sourceforge.net/projects/msdock/. The pack-
age contains a set of Perl scripts for computing the scor-
ing function and for creating a Perl database file that
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stores the names of ligands and their atom types. It also
offers some demonstration examples of how to obtain the
final docking scores. These scripts work on a Unix or
Linux platform and their download is free for academic
users.

Additional material

Additional file 1 Supplementary data for details of motif related
parameters. This file contains 2 tables and 3 figures. Table S1 lists the lower
and upper distance thresholds for each of the 280 atom type pairs. Table 52
lists the binding site enrichment factor, Fb, of each of the 455 non-metal
protein atom type triangles. Figs. ST and S2 display the optimization results
of two parameters, Penalty weight W and the raising percentage of lower
thresholds, on the training dataset LPDB. Fig. S3 shows a schematic presen-
tation for some of the atom types defined in Table 1.
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