584 research outputs found

    Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition

    Full text link
    We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, non-linear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.Comment: 4 pages, 4 figure

    Correlation Effect on Peierls Transition

    Full text link
    The effect of correlation on Peierls transition, which is accompanied by a dimerization, t_d, of a bond alternation for transfer energy, has been examined for a half-filled one-dimensional electron system with on-site repulsive interaction (U). By applying the renormalization group method to the interaction of the bosonized Hamiltonian, the dimerization has been calculated variationally and self-consistently with a fixed electron-phonon coupling constant (\lambda) and it is shown that t_d takes a maximum as a function of U. The result is examined in terms of charge gap and spin gap and is compared with that of the numerical simulation by Hirsch [Phys. Rev. Lett 51 (1983) 296]. Relevance to the spin Peierls transition in organic conductors is discussed.Comment: 4 pages, 4 figures, to be published in J. Phys. Soc. Jpn. 71 No.3 (2002

    Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model

    Get PDF
    We have carried out Density Matrix Renormalization Group (DMRG) calculations on the ground state of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian. The PPP model includes long-range electron correlations which are required for physically realistic modeling of conjugated polymers. We have obtained the ground state energy as a function of the dimerization δ\delta and various correlation functions and structure factors for δ=0\delta=0. From energetics, we find that while the nature of the Peierls' instabilityin polyacene is conditional and strong electron correlations enhance the dimerization. The {\it cis} form of the distortion is favoured over the {\it trans} form. However, from the analysis of correlation functions and associated structure factors, we find that polyacene is not susceptible to the formation of a bond order wave (BOW), spin density wave (SDW) or a charge density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure

    Dynamical Correlation Functions using the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure

    DMRG study of scaling exponents in spin-1/2 Heisenberg chains with dimerization and frustration

    Get PDF
    In conformal field theory, key properties of spin-1/2 chains, such as the ground state energy per site and the excitation gap scale with dimerization delta as delta^alpha with known exponents alpha and logarithmic corrections. The logarithmic corrections vanish in a spin chain with nearest (J=1) and next nearest neighbor interactions (J_2), for J_2c=0.2411. DMRG analysis of a frustrated spin chain with no logarithmic corrections yields the field theoretic values of alpha, and the scaling relation is valid up to the physically realized range, delta ~ 0.1. However, chains with logarithmic corrections (J_2<0.2411 J) are more accurately fit by simple power laws with different exponents for physically realized dimerizations. We show the exponents decreasing from approximately 3/4 to 2/3 for the spin gap and from approximately 3/2 to 4/3 for the energy per site and error bars in the exponent also decrease as J_2 approaches to J_2c.Comment: 9 pages including two figures; added standard deviations of various fitting parameters such as exponents, and several references to earlier wor

    Molecular crystal approach for pi-conjugated polymers: from PPP Hamiltonian to Holstein model for polaron states

    Full text link
    Starting from the π\pi-electron Pariser-Parr-Pople (PPP) Hamiltonian which includes both strong electron-phonon and electron-electron interactions, we propose some strongly correlated wave functions of increasing quality for the ground state of conjugated polymers. These wavefunctions are built by combining different finite sets of local configurations extended at most over two nearest-neighbour monomers. With this picture, the doped case with one additional particle is expressed in terms of quasi-particle. Thus, the polaron formation problem goes back to the study of a Holstein like model.Comment: 27 pages, 6 eps figs, Revtex; enlarged version. Submitted to Journal of Physics: Condensed Matte

    Analytical solutions to the third-harmonic generation in trans-polyacetylene: Application of dipole-dipole correlation on the single electron models

    Full text link
    The analytical solutions for the third-harmonic generation (THG) on infinite chains in both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of trans-polyacetylene are obtained through the scheme of dipole-dipole (DDDD) correlation. They are not equivalent to the results obtained through static current-current (J0J0J_0J_0) correlation or under polarization operator P^\hat{P}. The van Hove singularity disappears exactly in the analytical forms, showing that the experimentally observed two-photon absorption peak (TPA) in THG may not be directly explained by the single electron models.Comment: 10 pages, 4 figures, submitted to Phys. Rev.

    Electron Spin Resonance in S=1/2 antiferromagnetic chains

    Full text link
    A systematic field-theory approach to Electron Spin Resonance (ESR) in the S=1/2S=1/2 quantum antiferromagnetic chain at low temperature TT (compared to the exchange coupling JJ) is developed. In particular, effects of a transverse staggered field hh and an exchange anisotropy (including a dipolar interaction) δ\delta on the ESR lineshape are discussed. In the lowest order of perturbation theory, the linewidth is given as Jh2/T2\propto Jh^2/T^2 and (δ/J)2T\propto (\delta/J)^2 T, respectively. In the case of a transverse staggered field, the perturbative expansion diverges at lower temperature; non-perturbative effects at very low temperature are discussed using exact results on the sine-Gordon field theory. We also compare our field-theory results with the predictions of Kubo-Tomita theory for the high-temperature regime, and discuss the crossover between the two regimes. It is argued that a naive application of the standard Kubo-Tomita theory to the Dzyaloshinskii-Moriya interaction gives an incorrect result. A rigorous and exact identity on the polarization dependence is derived for certain class of anisotropy, and compared with the field-theory results.Comment: 53 pages in REVTEX, 7 figures in EPS included; revised version with missing references and correction

    Effects of Lattice and Molecular Phonons on Photoinduced Neutral-to-Ionic Transition Dynamics in Tetrathiafulvalene-pp-Chloranil

    Full text link
    For electronic states and photoinduced charge dynamics near the neutral-ionic transition in the mixed-stack charge-transfer complex tetrathiafulvalene-pp-chloranil (TTF-CA), we review the effects of Peierls coupling to lattice phonons modulating transfer integrals and Holstein couplings to molecular vibrations modulating site energies. The former stabilizes the ionic phase and reduces discontinuities in the phase transition, while the latter stabilizes the neutral phase and enhances the discontinuities. To reproduce the experimentally observed ionicity, optical conductivity and photoinduced charge dynamics, both couplings are quantitatively important. In particular, strong Holstein couplings to form the highly-stabilized neutral phase are necessary for the ionic phase to be a Mott insulator with large ionicity. A comparison with the observed photoinduced charge dynamics indicates the presence of strings of lattice dimerization in the neutral phase above the transition temperature.Comment: 9 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp
    corecore