1,201 research outputs found

    New Formula for Peremptory Challenges: XX=XY

    Get PDF

    Some Physical and Chemical Characteristics of Peanut Pods and Kernels in an Irrigation Study

    Get PDF
    Agronomy (Field Crops

    Enhanced magnetic response of fluids using self-assembled petal-like iron oxide particles

    Get PDF
    Using self-assembled iron oxide (SAIO) particles with petal-like morphology, aqueous fluids containing magnetic particles were prepared and the effect of hierarchical particle surface on the viscoelasticity under magnetic was investigated. The fluids consisting of self-assembled iron oxide particles exhibit highly tunable viscoelasticity which is controlled by applying external magnetic field. A difference between SAIO particles and spherical particles is explained by the fact that surface features of the self-assembled particles increased the network strength between particles in the fluids. © 2010 American Institute of Physics

    The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems

    Full text link
    We study the influence of a DC bias voltage V on quantum interference corrections to the measured differential conductance in metallic mesoscopic wires and rings. The amplitude of both universal conductance fluctuations (UCF) and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger than the Thouless energy. The enhancement persists even in the presence of inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages electron-phonon collisions lead to the amplitude decaying as a power law for the UCF and exponentially for the ABE. We obtain good agreement of the experimental data with a model which takes into account the decrease of the electron phase-coherence length due to electron-electron and electron-phonon scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in Europhysics Letter

    Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System

    Get PDF
    Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle

    Design and Characterization of a Non-Linear Variable Inerter in Vehicle Suspension System

    Get PDF
    Inerter is a two-terminal component in suspension system such that the force at the two terminals is directly proportional to the relative acceleration of these two points. Studies have shown that the inerter can provide satisfactory vibration isolation for a number of suspension applications, including train suspension, building suspension and vehicle suspension. In the context of vehicle suspension, the existing passive inerter has been shown to provide benefits to vehicle dynamics performance measures, such as ride comfort and road holding ability. However, a basic passive inerter has fixed characteristic, and hence its potential is limited. This study overcome this limitation by incorporating variable inertia in inerter flywheel, however its non-linear characteristic needs to be determined. The method of achieving variable inertia in inerter flywheel is through introduction of movable masses or sliders attached with springs into inerter flywheel. The change of moment of inertia is caused by position change of sliders due to centrifugal force when the flywheel is rotating. Results showed that the proposed variable inerter exhibits a non-linear force-acceleration relationship with respect to its operating rotational speed. A vehicle suspension system equipped with a variable inerter is also able to further reduce vertical vehicle body acceleration and vehicle’s dynamic tire load when compared with vehicle suspension system without inerter and equipped with a passive inerter, which indirectly relates to a better vehicle ride and handling performance improvements. Hence, it can be proved that the proposed variable inerter is better than a passive inerter and is able to provide better ride comfort and road holding ability to a vehicle

    Development of the ASTRO-H Soft X-ray Telescope (SXT): Engineering Model Performance

    Get PDF
    The X-ray astronomy satellite ASTRO-H, being developed under the collaboration among JAXA, NASA's GSFC and ESA, will have two Soft X-ray Telescopes (SXTs), among other instuments onboard, with a sensitive energy band below 12 keV. One is for an X-ray micorocalorimeter detector and the other for a X-ray CCD detector. The SXT uses a conically approximated Wolter I grazing incidence optic implemented by thin aluminum foil substrates with thickness of 0.152, 0.229, and 0.305 mm. It is similar to the Suzaku XRT, but with larger diameter (45 cm) and longer focal length (5.6 m). Goal of the angular resolution and effective area are 1 arcmin and 390 cmA2A2 at 6 keV, respectively. We made serveral improvements from Suzaku to ASTRO-H, such as thicker substrates, more forming mandrels, thinner epoxy layer for replication, stiffer housings, precise alignment bars, etc. With all these changes, we have fabricated the engineering test unit of the SXT. In this paper, we will discuss all the changes made, their effects, and report X-ray performance of the SXT test unit. An angular resolution of the test unit was measured at new Goddard X-ray calibration facility (100 m X-ray beamline) and was found to be 1.1 arcmin. We will also discuss further improvements toward the flight unit to be delivered to JAXA in 2012

    Maternal anxiety about prenatal screening for group B streptococcus disease and impact of positive colonization results

    Get PDF
    Abstract Objective: Universal screening for colonization by group B streptococcus (GBS) is the recommended strategy to reduce incidence of colonization in newborns and prevent neonatal GBS-related disease. This study was designed to assess maternal anxiety levels about prenatal screening and psychological impact of positive colonization test results. Methods: A total of 71 women who screened positively for GBS colonization and 112 screen-negative women (controls) were recruited. Anxiety levels were measured by the Spielberger State Trait-anxiety Inventory just before the GBS screening test, 1-week after testing, and 1-week after delivery. After delivery of their infants, all participants were asked to respond with a Likert scale line about attitudes toward being tested for GBS colonization. Results: Women with GBS colonization reported significantly greater psychological distress on state-anxiety scores after the full report was received. The trait-and state-anxiety scores before GBS screen testing and after delivery did not differ between the groups. Both groups of women were strongly positive about being screened for GBS in the current pregnancy and in future pregnancies. Conclusion: Women with GBS colonization did not have a sustained increase in anxiety; therefore, clinician concerns about causing maternal anxiety should not be an impediment to test for GBS.
    corecore