8 research outputs found

    Вікові особливості залучення населення до оздоровчо-рекреаційної рухової активності в умовах міського парку

    Get PDF
    Рівень залучення населення до оздоровчо- рекреаційної діяльності у міському парку залежить від зовнішніх та внутрішніх чинників. До зовнішніх чинників належать умови життя, матеріальне забезпечення, спосіб життя, режим рухової активності та мікросередовища. До внутрішніх – мотиви, інтереси, рівень потреб, тип темпераменту, емоційний стан, бажання, переконання, стан здоров’я та спрямованість особистості

    4f-Block Metal Complexes as Secondary Building Units in Preparing 4d<i>–</i>4f Coordination Polymers: Preparation, Structures, and Luminescent Properties of [Ln<sub>2</sub>L<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·{[Ln<sub>2</sub>L<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>](NO<sub>3</sub>)<sub>2</sub>} and {[AgLnL<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>](NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>} (L = 3-Pyridinepropinoate, Ln = Eu, Tb, Nd)

    No full text
    Three new 4d–4f metal–organic coordination polymers were prepared by using 4f-block metal complexes as secondary building units. Discrete 4f complexes, [Ln<sub>2</sub>L<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·{[Ln<sub>2</sub>L<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>]­(NO<sub>3</sub>)<sub>2</sub>} {Ln = Eu (<b>1</b>), Tb (<b>2</b>), Nd (<b>3</b>)}, were prepared by microwave-heating a mixture of Ln­(NO<sub>3</sub>)<sub>3</sub>·<i>n</i>H<sub>2</sub>O, 3-pyridinepropionic acid (HL), and NaOH in water for 1 min. Compounds <b>1</b>–<b>3</b> were subsequently treated with AgNO<sub>3</sub> to form three-dimensional Ag–Ln coordination polymers, [AgLnL<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]­(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> {Ln = Eu (<b>4</b>), Tb (<b>5</b>), Nd (<b>6</b>)}. Compounds <b>1</b>–<b>3</b> are isostructural and consist of two dimers: a neural dimer and an ionic dimer. In these compounds, the pyridyl N atoms of ligands do not coordinate to the Ln<sup>3+</sup> ions. In isostructural coordination polymers <b>4</b>–<b>6</b>, the pyridyl N atoms are bonded to soft Ag<sup>+</sup> ions, and carboxylate oxygen atoms are bonded to hard Ln<sup>3+</sup> ions. Compounds <b>1</b> and <b>4</b> exhibit practically the same red luminescence in the solid state, and compounds <b>2</b> and <b>5</b> exhibit the green luminescence, but compounds <b>3</b> and <b>6</b> do not exhibit photoluminescence in the visible region

    4f-Block Metal Complexes as Secondary Building Units in Preparing 4d<i>–</i>4f Coordination Polymers: Preparation, Structures, and Luminescent Properties of [Ln<sub>2</sub>L<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·{[Ln<sub>2</sub>L<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>](NO<sub>3</sub>)<sub>2</sub>} and {[AgLnL<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>](NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>} (L = 3-Pyridinepropinoate, Ln = Eu, Tb, Nd)

    No full text
    Three new 4d–4f metal–organic coordination polymers were prepared by using 4f-block metal complexes as secondary building units. Discrete 4f complexes, [Ln<sub>2</sub>L<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·{[Ln<sub>2</sub>L<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>]­(NO<sub>3</sub>)<sub>2</sub>} {Ln = Eu (<b>1</b>), Tb (<b>2</b>), Nd (<b>3</b>)}, were prepared by microwave-heating a mixture of Ln­(NO<sub>3</sub>)<sub>3</sub>·<i>n</i>H<sub>2</sub>O, 3-pyridinepropionic acid (HL), and NaOH in water for 1 min. Compounds <b>1</b>–<b>3</b> were subsequently treated with AgNO<sub>3</sub> to form three-dimensional Ag–Ln coordination polymers, [AgLnL<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]­(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> {Ln = Eu (<b>4</b>), Tb (<b>5</b>), Nd (<b>6</b>)}. Compounds <b>1</b>–<b>3</b> are isostructural and consist of two dimers: a neural dimer and an ionic dimer. In these compounds, the pyridyl N atoms of ligands do not coordinate to the Ln<sup>3+</sup> ions. In isostructural coordination polymers <b>4</b>–<b>6</b>, the pyridyl N atoms are bonded to soft Ag<sup>+</sup> ions, and carboxylate oxygen atoms are bonded to hard Ln<sup>3+</sup> ions. Compounds <b>1</b> and <b>4</b> exhibit practically the same red luminescence in the solid state, and compounds <b>2</b> and <b>5</b> exhibit the green luminescence, but compounds <b>3</b> and <b>6</b> do not exhibit photoluminescence in the visible region

    4f-Block Metal Complexes as Secondary Building Units in Preparing 4d<i>–</i>4f Coordination Polymers: Preparation, Structures, and Luminescent Properties of [Ln<sub>2</sub>L<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·{[Ln<sub>2</sub>L<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>](NO<sub>3</sub>)<sub>2</sub>} and {[AgLnL<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>](NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>} (L = 3-Pyridinepropinoate, Ln = Eu, Tb, Nd)

    No full text
    Three new 4d–4f metal–organic coordination polymers were prepared by using 4f-block metal complexes as secondary building units. Discrete 4f complexes, [Ln<sub>2</sub>L<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·{[Ln<sub>2</sub>L<sub>4</sub>(H<sub>2</sub>O)<sub>8</sub>]­(NO<sub>3</sub>)<sub>2</sub>} {Ln = Eu (<b>1</b>), Tb (<b>2</b>), Nd (<b>3</b>)}, were prepared by microwave-heating a mixture of Ln­(NO<sub>3</sub>)<sub>3</sub>·<i>n</i>H<sub>2</sub>O, 3-pyridinepropionic acid (HL), and NaOH in water for 1 min. Compounds <b>1</b>–<b>3</b> were subsequently treated with AgNO<sub>3</sub> to form three-dimensional Ag–Ln coordination polymers, [AgLnL<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]­(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub> {Ln = Eu (<b>4</b>), Tb (<b>5</b>), Nd (<b>6</b>)}. Compounds <b>1</b>–<b>3</b> are isostructural and consist of two dimers: a neural dimer and an ionic dimer. In these compounds, the pyridyl N atoms of ligands do not coordinate to the Ln<sup>3+</sup> ions. In isostructural coordination polymers <b>4</b>–<b>6</b>, the pyridyl N atoms are bonded to soft Ag<sup>+</sup> ions, and carboxylate oxygen atoms are bonded to hard Ln<sup>3+</sup> ions. Compounds <b>1</b> and <b>4</b> exhibit practically the same red luminescence in the solid state, and compounds <b>2</b> and <b>5</b> exhibit the green luminescence, but compounds <b>3</b> and <b>6</b> do not exhibit photoluminescence in the visible region

    Origin of Regioselectivity in the Copper-Catalyzed Borylation Reactions of Internal Aryl Alkynes with Bis(pinacolato)diboron

    No full text
    The detailed reaction mechanism for the borylation of internal aryl alkynes catalyzed by copper­(I) boryl complexes was studied by experiments and density functional theory (DFT) calculations. The calculated results indicate that the Cu­(I)-catalyzed borylation occurs through Ph–CC–R insertion into the Cu–B bond to give the α- and β-borylalkyl intermediates. Among the various substituent groups (Me, Et, <i>i</i>-Pr, <i>t</i>-Bu, 1,1-Et<sub>2</sub>Pr, and Cum) at the R position, internal aryl alkynes having substituent groups less bulky than an aryl group converted to β-borylated products, whereas those having substituent groups bulkier than an aryl group converted to α-borylated products with high regio- and stereoselectivity

    C–H Activation Guided by Aromatic N–H Ketimines: Synthesis of Functionalized Isoquinolines Using Benzyl Azides and Alkynes

    No full text
    Aromatic N–H ketimines were in situ generated from various benzylic azides by ruthenium catalysis for the subsequent Rh-catalyzed annulation reaction with alkynes to give the corresponding isoquinolines. In contrast to conventional synthetic methods for aromatic N–H ketimines, our protocol works under mild and neutral conditions, which enabled the synthesis of isoquinolines having various functionalities such as carbonyl, ester, alkenyl, and ether groups. In addition, the imidates generated from α-azido ethers were successfully used for the synthesis of 1-alkoxyisoquinolines

    C–H Activation Guided by Aromatic N–H Ketimines: Synthesis of Functionalized Isoquinolines Using Benzyl Azides and Alkynes

    No full text
    Aromatic N–H ketimines were in situ generated from various benzylic azides by ruthenium catalysis for the subsequent Rh-catalyzed annulation reaction with alkynes to give the corresponding isoquinolines. In contrast to conventional synthetic methods for aromatic N–H ketimines, our protocol works under mild and neutral conditions, which enabled the synthesis of isoquinolines having various functionalities such as carbonyl, ester, alkenyl, and ether groups. In addition, the imidates generated from α-azido ethers were successfully used for the synthesis of 1-alkoxyisoquinolines

    Dibenzothiopheno[6,5‑<i>b</i>:6′,5′‑<i>f</i>]thieno[3,2‑<i>b</i>]thiophene (DBTTT): High-Performance Small-Molecule Organic Semiconductor for Field-Effect Transistors

    No full text
    We present the synthesis, characterization, and structural analysis of a thiophene-rich heteroacene, dibenzothiopheno­[6,5-<i>b</i>:6′,5′-<i>f</i>]­thieno­[3,2-<i>b</i>]­thiophene (DBTTT) as well as its application in field-effect transistors. The design of DBTTT is based on the enhancement of intermolecular charge transfer through strong S–S interactions. Crystal structure analysis showed that the intermolecular π–π distance is shortened and that the packing density is higher than those of the electronically equivalent benzene analogue, dinaphtho-[2,3-<i>b</i>:2′,3′-<i>f</i>]­thieno­[3,2-<i>b</i>]­thiophene (DNTT). The highest hole mobility we obtained in polycrystalline DBTTT thin-film transistors was 19.3 cm<sup>2</sup>·V<sup>–1</sup>·s<sup>–1</sup>, six times higher than that of DNTT-based transistors. The observed isotropic angular mobilities and thermal stabilities at temperatures up to 140 °C indicate the great potential of DBTTT for attaining device uniformity and processability
    corecore