771 research outputs found

    Nonchaotic Nonlinear Motion Visualized in Complex Nanostructures by Stereographic 4D Electron Microscopy

    Get PDF
    Direct electron imaging with sufficient time resolution is a powerful tool for visualizing the three-dimensional (3D) mechanical motion and resolving the four-dimensional (4D) trajectories of many different components of a nanomachine, e.g., a NEMS device. Here, we report a nanoscale nonchaotic motion of a nano- and microstructured NiTi shape memory alloy in 4D electron microscopy. A huge amplitude oscillatory mechanical motion following laser heating is observed repetitively, likened to a 3D motion of a conductor’s baton. By time-resolved 4D stereographic reconstruction of the motion, prominent vibrational frequencies (3.0, 3.8, 6.8, and 14.5 MHz) are fully characterized, showing evidence of nonlinear behavior. Moreover, it is found that a stress (fluence)−strain (displacement) profile shows nonlinear elasticity. The observed resonances of the nanostructure are reminiscent of classical molecular quasi-periodic behavior, but here both the amplitude and frequency of the motion are visualized using ultrafast electron microscopy

    Atomic-Scale Imaging in Real and Energy Space Developed in Ultrafast Electron Microscopy

    Get PDF
    In this contribution, we report the development of ultrafast electron microscopy (UEM) with atomic-scale real-, energy-, and Fourier-space resolutions. This second-generation UEM provides images, diffraction patterns, and electron energy spectra, and here we demonstrate its potential with applications for nanostructured materials and organometallic crystals. We clearly resolve the separation between atoms in the direct images and the Bragg spots/Debye−Scherrer rings in diffraction and obtain the electronic structure and elemental energies in the electron energy loss spectra (EELS) and energy filtered transmission electron microscopy (EFTEM)

    Structural dynamics and divergence of the polygalacturonase gene family in land plants

    Get PDF
    A distinct feature of eukaryotic genomes is the presence of gene families. The polygalacturonase (PG) (EC3.2.1.15) gene family is one of the largest gene families in plants. PG is a pectin-digesting enzyme with a glycoside hydrolase 28 domain. It is involved in numerous plant developmental processes. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Here, phylogenetic and gene structure analysis of PG genes in algae and land plants revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. PG genes in land plants contained 15 homologous intron blocks and 13 novel intron blocks. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. These findings demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intronic loss. Moreover, they underscore the importance of intron gain and loss in genomic adaptation to selective pressure

    Adenosine A2A Receptor Agonist, Polydeoxyribonucleotide Treatment Improves Locomotor Function and Thermal Hyperalgesia Following Neuropathic Pain in Rats

    Get PDF
    Purpose Lithotomy position has been widely used in the various urologic surgery. Occasionally sensory and motor problems of the lower extremities are occurred due to the lithotomy position and these deficits may be related with sciatic nerve injury (SNI). Inflammatory process is a factor to induce functional impairment after SNI. Therefore, we evaluated the role of adenosine A2A receptor agonists, polydeoxyribonucleotide (PDRN) showing anti-inflammatory effect on locomotor function following SNI in rats. Methods Sciatic nerve was compressed with surgical clips for 1 minute after exposing of right sciatic nerve. After 3 days of SNI, PDRN (2, 4, and 8 mg/kg) was applied to the damaged area of sciatic nerve once daily for 10 days. Walking track analysis was conducted for locomotor function and plantar test was performed for thermal pain sensitivity. Level of cyclic adenosine-3´,5´-monophosphate (cAMP) were measured using enzyme-linked immunosorbent assay. Western blot analysis was performed for tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cAMP response element binding protein (CREP), vascular endothelial growth factor (VEGF). Immunofluorescence for neurofilament was also conducted. Results Locomotor function was decreased and thermal pain sensitivity was increased by SNI. SNI enhanced proinflammatory cytokines’ production, such as TNF-α and IL-1β, while suppressed CREP phosphorylation and cAMP level. SNI also reduced the expression of VEGF and neurofilaments. However, treatment with PDRN inhibited proinflammatory cytokines’ production and upregulated CREP phosphorylation and cAMP expression. PDRN also enhanced the expression of VEGF and neurofilaments. As a result, PDRN improved locomotor function and alleviated thermal hyperalgesia after SNI. Conclusions PDRN has shown potential to be used as an effective treatment for neuropathic pain

    The Benefits and Risks of Prophylactic Central Neck Dissection for Papillary Thyroid Carcinoma: Prospective Cohort Study

    Get PDF
    Objectives. This study evaluated the benefits of performing prophylactic central neck dissection (CND) with total thyroidectomy (TT) in management of papillary thyroid carcinoma (PTC) patients who were clinically node-negative at presentation. Methods. A total of 257 patients with stage T1 or T2 PTC and without preoperative evidence of lymph node involvement (N0) were enrolled in this prospective study. The patients were randomly assigned to two groups: (1) a total thyroidectomy (TT) group (n=104) or (2) a TT plus CND group (n=153). The two groups were compared for their perioperative data, complication rates, disease recurrence rates, and clinical outcomes. Results. The two groups of patients were similar in age, sex ratio, follow-up duration, and tumor size (P=0.227, 0.359, 0.214, and 0.878, resp.). The two groups showed similar rates of disease recurrence (3.9% in the TT group versus 3.3% in the TT plus CND group); however, complications occurred more frequently in the TT plus CND group; especially transient hypocalcemia (P=0.043). Conclusions. Patients treated with TT plus CND had a higher rate of complications with similar recurrence rate. We believe that CND may not be routinely recommended when treating patients with PTC

    Transaction-Cost-Based Selection of Appropriate General Contractor-Subcontractor Relationship Type

    Get PDF
    Relationships between general contractors and subcontractors are generally formed on a project-by-project basis. However, because of the competitive nature of the construction industry, this traditional arrangement can result in adversarial relationships between general contractors and subcontractors, which can jeopardize potential or ongoing collaborative construction plans. To avoid this problem, close, long-term relationships between general contractors and subcontractors, as in strategic partnerships, must be established. Unfortunately, forming and sustaining such relationships can be time-consuming and cost-intensive. Furthermore, this type of relationship does not necessarily enhance cooperation or work performance. For contractors to successfully establish effective partnerships with their subcontractors, they must select the appropriate relationship by considering the different characteristics of the subcontracted work involved. Based on transaction cost theory, the findings of this study show that transaction costs incurred by general contractors and subcontractors vary according to the type of relationship established. Therefore, for the purpose of comparing transaction costs incurred in both competitive and partnership relationships, transaction-cost-based profit models for both general contractors and subcontractors are developed, respectively, for each relationship type. As well, by applying different strategies to maximize profits in each relationship, and by simulating the parameters affecting the nature of the subcontracted work, the conditions and relationships under which general contractors` profits are optimized have been determined. Finally, based on simulation, practical guidelines for choosing the most appropriate relationship type are proposed.

    Full-length genomic analysis of korean porcine sapelovirus strains.

    Get PDF
    Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3' poly(A) tail, and showed the typical picornavirus genome organization; 5'untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3'UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5'UTR, a cis-replication element (CRE) in the 2C coding region and 3'UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3'UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV

    4D imaging of transient structures and morphologies in ultrafast electron microscopy

    Get PDF
    With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics

    Analysis of Skin Humidity Variation Between Sasang Types

    Get PDF
    The purpose of this study was to examine the relationship between variations in skin humidity (SH) induced by perspiration across Sasang types and to identify novel and effective Sasang classification factors. We also analyzed the responses of each Sasang type to sweating-related QSCC II items. The results revealed a significant difference in SH across gender and significant differences in SH before and after perspiration between Tae-Eum and So-Eum men. In addition, Tae-Eum women showed significant differences in SH compared with women classified as another Sasang type. Furthermore, evaluation of the items related to sweating in the QSCC II and their relationship to each constitution revealed a significant difference between Tae-Eum and other Sasang types. Overall, the results of this study indicate that there is a distinct SH difference following perspiration between Tae-Eum and other Sasang types. Such findings may aid in Sasang typology diagnostic testing with the support of further sophisticated clinical studies

    Chfr is linked to tumour metastasis through the downregulation of HDAC1

    Get PDF
    Chfr is a ubiquitin ligase that functions in the mitotic checkpoint by delaying entry into metaphase in response to mitotic stress. It has been suggested that Chfr is a tumour suppressor as Chfr is frequently silenced in human cancers. To better understand how Chfr activity relates to cell-cycle progression and tumorigenesis, we sought to identify Chfr-interacting proteins using affinity purification combined with mass spectrometry. Histone deacetylase 1 (HDAC1), which represses transcription by deacetylating histones, was newly isolated as a Chfr-interacting protein. Chfr binds and downregulates HDAC1 by inducing its polyubiquitylation, both in vitro and in vivo. Ectopic expression of Chfr in cancer cells that normally do not express it results in downregulation of HDAC1, leading to upregulation of the Cdk inhibitor p21^(CIP1/WAF1) and the metastasis suppressors KAI1 and E-cadherin. Coincident with these changes, cells arrest in the G1 phase of the cell cycle and become less invasive. Collectively, our data suggest that Chfr functions as a tumour suppressor by regulating HDAC1
    corecore