3,924 research outputs found

    A Design of MAC Model Based on the Separation of Duties and Data Coloring: DSDC-MAC

    Get PDF
    Among the access control methods for database security, there is Mandatory Access Control (MAC) model in which the security level is set to both the subject and the object to enhance the security control. Legacy MAC models have focused only on one thing, either confidentiality or integrity. Thus, it can cause collisions between security policies in supporting confidentiality and integrity simultaneously. In addition, they do not provide a granular security class policy of subjects and objects in terms of subjects\u27 roles or tasks. In this paper, we present the security policy of Bell_LaPadula Model (BLP) model and Biba model as one complemented policy. In addition, Duties Separation and Data Coloring (DSDC)-MAC model applying new data coloring security method is proposed to enable granular access control from the viewpoint of Segregation of Duty (SoD). The case study demonstrated that the proposed modeling work maintains the practicality through the design of Human Resources management System. The proposed model in this study is suitable for organizations like military forces or intelligence agencies where confidential information should be carefully handled. Furthermore, this model is expected to protect systems against malicious insiders and improve the confidentiality and integrity of data

    A Practical Tessellation-Based Approach for Optimizing Cell-Specific Bias Values in LTE-A Heterogeneous Cellular Networks

    Get PDF
    In order to implement an optimized solution for cell range expansion (CRE) and enhanced intercell interference coordination (eICIC) schemes in long-term evolution-advanced (LTE-A) heterogeneous cellular networks (HCNs) and to realize good load-balancing performance in existing LTE-A systems, a practical tessellation-based algorithm is proposed. In this algorithm, a globalized cell-specific bias optimization and a localized almost blank subframe (ABS) ratio update are proposed. The proposed scheme does not require major changes to existing protocols. Thus, it can be implemented in existing LTE-A systems with any legacy user equipment (UE) with only a partial update to the BSs and core networks. From simulation results, it is shown that the tessellation formed by the proposed approach is quite consistent with the optimal one for various realistic scenarios. Thus, the proposed scheme can provide a much better load-balancing capability compared with the conventional common bias scheme. Owing to the improved load-balancing capability, the user rate distribution of the proposed scheme is much better than that obtained from the conventional scheme and is even indistinguishable from that of the ideal joint user association scheme

    Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy

    Full text link
    We study theoretically the current-induced magnetic domain wall motion in a metallic nanowire with perpendicular magnetic anisotropy. The anisotropy can reduce the critical current density of the domain wall motion. We explain the reduction mechanism and identify the maximal reduction conditions. This result facilitates both fundamental studies and device applications of the current- induced domain wall motion

    A Framework for Selecting Information Systems Planning(ISP) Approach

    Get PDF

    Stratifying the early radiologic trajectory in dyspneic patients with COVID-19 pneumonia

    Get PDF
    OBJECTIVE: This study aimed to stratify the early pneumonia trajectory on chest radiographs and compare patient characteristics in dyspneic patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: We retrospectively included 139 COVID-19 patients with dyspnea (87 men, 62.7+/-16.3 years) and serial chest radiographs from January to September 2020. Radiographic pneumonia extent was quantified as a percentage using a previously-developed deep learning algorithm. A group-based trajectory model was used to categorize the pneumonia trajectory after symptom onset during hospitalization. Clinical findings, and outcomes were compared, and Cox regression was performed for survival analysis. RESULTS: Radiographic pneumonia trajectories were categorized into four groups. Group 1 (n = 83, 59.7%) had negligible pneumonia, and group 2 (n = 29, 20.9%) had mild pneumonia. Group 3 (n = 13, 9.4%) and group 4 (n = 14, 10.1%) showed similar considerable pneumonia extents at baseline, but group 3 had decreasing pneumonia extent at 1-2 weeks, while group 4 had increasing pneumonia extent. Intensive care unit admission and mortality were significantly more frequent in groups 3 and 4 than in groups 1 and 2 (P \u3c .05). Groups 3 and 4 shared similar clinical and laboratory findings, but thrombocytopenia ( \u3c 150x103/muL) was exclusively observed in group 4 (P = .016). When compared to groups 1 and 2, group 4 (hazard ratio, 63.3; 95% confidence interval, 7.9-504.9) had a two-fold higher risk for mortality than group 3 (hazard ratio, 31.2; 95% confidence interval, 3.5-280.2), and this elevated risk was maintained after adjusting confounders. CONCLUSION: Monitoring the early radiologic trajectory beyond baseline further prognosticated at-risk COVID-19 patients, who potentially had thrombo-inflammatory responses

    Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

    Get PDF
    Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1−/−) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1−/− mice than in WT mice. Furthermore, the bone status of Vav1−/− mice was analyzed in situ and the femurs of Vav1−/− mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption

    Precision genome engineering with programmable DNA-nicking enzymes

    Get PDF
    Zinc finger nucleases (ZFNs) are powerful tools of genome engineering but are limited by their inevitable reliance on error-prone nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs), which gives rise to randomly generated, unwanted small insertions or deletions (indels) at both on-target and off-target sites. Here, we present programmable DNA-nicking enzymes (nickases) that produce single-strand breaks (SSBs) or nicks, instead of DSBs, which are repaired by error-free homologous recombination (HR) rather than mutagenic NHEJ. Unlike their corresponding nucleases, zinc finger nickases allow site-specific genome modifications only at the on-target site, without the induction of unwanted indels. We propose that programmable nickases will be of broad utility in research, medicine, and biotechnology, enabling precision genome engineering in any cell or organism.
    corecore