1,851 research outputs found
Solar Flare Intermittency and the Earth's Temperature Anomalies
We argue that earth's short-term temperature anomalies and the solar flare
intermittency are linked. The analysis is based upon the study of the scaling
of both the spreading and the entropy of the diffusion generated by the
fluctuations of the temperature time series. The joint use of these two methods
evidences the presence of a L\'{e}vy component in the temporal persistence of
the temperature data sets that corresponds to the one that would be induced by
the solar flare intermittency. The mean monthly temperature datasets cover the
period from 1856 to 2002.Comment: 4 pages, 5 figure
Treatment of cutaneous melanoma: current approaches and future prospects
Melanoma is the most aggressive and deadly type of skin cancer. Surgical resection with or without lymph node sampling is the standard of care for primary cutaneous melanoma. Adjuvant therapy decisions may be informed by careful consideration of prognostic factors. High-dose adjuvant interferon alpha-2b increases disease-free survival and may modestly improve overall survival. Less toxic alternatives for adjuvant therapy are currently under study. External beam radiation therapy is an option for nodal beds where the risk of local recurrence is very high. In-transit melanoma metastases may be treated locally with surgery, immunotherapy, radiation, or heated limb perfusion. For metastatic melanoma, the options include chemotherapy or immunotherapy; targeted anti-BRAF and anti-KIT therapy is under active investigation. Standard chemotherapy yields objective tumor responses in approximately 10%–20% of patients, and sustained remissions are uncommon. Immunotherapy with high-dose interleukin-2 yields objective tumor responses in a minority of patients; however, some of these responses may be durable. Identification of activating mutations of BRAF, NRAS, c-KIT, and GNAQ in distinct clinical subtypes of melanoma suggest that these are molecularly distinct. Emerging data from clinical trials suggest that substantial improvements in the standard of care for melanoma may be possible
First observations of the transient luminous event effect on ionospheric Schumann resonance, based on the China Seismo-Electromagnetic Satellite
In this study, we focus on the interactions and interrelated effects among the transient luminous events (TLEs) recorded at the Luoding ground station (22.76° N, 111.57° E), the lightning activities observed by the World Wide Lightning Location Network, and the ionospheric electric field deduced from the China Seismo-Electromagnetic Satellite (CSES). The results show that on 25 September 2021, the signal-to-noise ratio of the Schumann resonance at the first mode of 6.5 Hz and the second mode of 13 Hz dropped below 2.5 during the TLEs. A significant enhancement in the energy in extremely low frequencies (ELFs) occurred, and the power spectral density increased substantially. Distinct lightning whistler waves were found in the very low frequency (VLF) band, further indicating that the energy could possibly have been excited by the lightning. Our results suggest that the observations of the electric field from the satellite could possibly be utilised to monitor the lower-atmospheric lightning and its impact on the space environment.</p
Future scenarios modeling of urban stormwater management response to impacts of climate change and urbanization
Future scenario modeling was used to investigate the effectiveness of urban stormwater infrastructure and its response to potential future changes. The changes of urban stormwater, both in-flow quantity and water quality, in response to climate change and urbanization were examined and tested in two highly developed urban catchments using the US Environmental Protection Agency’s Storm Water
Management Model. Similar responses were observed in the two catchments, despite their differences in size and land use. Flow quantity and water quality appeared to be more sensitive to urbanization factors than to climatic change. With respect to factors attributable to urbanization, urban
intensification (land use plus population density) had more of an effect than land-use changes alone. Low-impact development, as a key adaptation measure, could be effective in mitigating the adverse impacts of future changes on urban stormwater. The methodology developed in this study may be useful for urban stormwater planning and testing such plans against future urbanization and climate change scenarios
Focused Review on Transthoracic Echocardiographic Assessment of Patients with Continuous Axial Left Ventricular Assist Devices
Left ventricular assist devices (LVADs) are systems for mechanical support for patients with end-stage heart failure. Preoperative, postoperative and comprehensive followup with transthoracic echocardiography has a major role in LVAD patient management. In this paper, we will present briefly the hemodynamics of axial-flow LVAD, the rationale, and available data for a complete and organized echocardiographic assessment in these patients including preoperative assessment, postoperative and long-term evaluation
Higher dimensional flat embeddings of (2+1) dimensional black holes
We obtain the higher dimensional global flat embeddings of static, rotating,
and charged BTZ black holes. On the other hand, we also study the similar
higher dimensional flat embeddings of the (2+1) de Sitter black holes which are
the counterparts of the anti-de Sitter BTZ black holes. As a result, the
charged dS black hole is shown to be embedded in (3+2) GEMS, contrast to the
charged BTZ one having (3+3) GEMS structure.Comment: 16pages, revtex, no figures, to appear in Phys. Rev.
Symplectic quantization of self-dual master Lagrangian
We consider the master Lagrangian of Deser and Jackiw, interpolating between
the self-dual and the Maxwell-Chern-Simons Lagrangian, and quantize it
following the symplectic approach, as well as the traditional Dirac scheme. We
demonstrate the equivalence of these procedures in the subspace of the
second-class constraints. We then proceed to embed this mixed first- and
second-class system into an extended first-class system within the framework of
both approaches, and construct the corresponding generator for this extended
gauge symmetry in both formulations.Comment: 27 page
Higher dimensional flat embeddings of black strings in (2+1) dimensions
We obtain (3+1) and (3+2) dimensional global flat embeddings of (2+1)
uncharged and charged black strings, respectively. In particular, the charged
black string, which is the dual solution of the Banados-Teitelboim-Zanelli
black holes, is shown to be embedded in the same global embedding Minkowski
space structure as that of the (2+1) charged de Sitter black hole solution.Comment: 11 pages, REVTEX, no figur
Recommended from our members
The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples
Shotgun metagenomics is increasingly used to characterise microbial communities, particularly for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. In this study we used shotgun metagenomics and sequencing of cultured isolates from the same samples to address these issues. We sampled three potential environmental AMR gene reservoirs (pig caeca, river sediment, effluent) and sequenced samples with shotgun metagenomics at high depth (~ 200 million reads per sample). Alongside this, we cultured single-colony isolates of Enterobacteriaceae from the same samples and used hybrid sequencing (short- and long-reads) to create high- quality assemblies for comparison to the metagenomic data. To automate data processing, we developed an open- source software pipeline, ‘ResPipe’
Recommended from our members
Granulocyte colony-stimulating factor blockade enables dexamethasone to inhibit lipopolysaccharide-induced murine lung neutrophils
Glucocorticoids promote neutrophilic inflammation, the mechanisms of which are poorly characterized. Using a lipopolysaccharide (LPS)-induced acute murine lung injury model, we determined the role of granulocyte colony-stimulating factor (G-CSF) in mouse lung neutrophil numbers in the absence and presence of dexamethasone, a potent glucocorticoid. G-CSF was blocked using a neutralizing antibody. Airway neutrophil numbers, cytokine levels, and lung injury parameters were measured. Glucocorticoid treatment maintained LPS-induced airway G-CSF while suppressing TNF and IL-6. The addition of anti-G-CSF antibodies enabled dexamethasone to decrease airway G-CSF, neutrophils, and lung injury scores. In LPS-challenged murine lungs, structural cells and infiltrating leukocytes produced G-CSF. In vitro using BEAS 2B bronchial epithelial cells, A549 lung epithelial cells, human monocyte-derived macrophages, and human neutrophils, we found that dexamethasone and proinflammatory cytokines synergistically induced G-CSF. Blocking G-CSF production in BEAS 2B cells using shRNAs diminished the ability of BEAS 2B cells to protect neutrophils from undergoing spontaneous apoptosis. These data support that G-CSF plays a role in upregulation of airway neutrophil numbers by dexamethasone in the LPS-induced acute lung injury model
- …