395 research outputs found

    Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes.

    Get PDF
    Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β-activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2-mediated ubiquitination and TAB1-TAB2. TAB1-TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption

    Quantized spin excitations in a ferromagnetic microstrip from microwave photovoltage measurements

    Full text link
    Quantized spin excitations in a single ferromagnetic microstrip have been measured using the microwave photovoltage technique. Several kinds of spin wave modes due to different contributions of the dipole-dipole and the exchange interactions are observed. Among them are a series of distinct dipole-exchange spin wave modes, which allow us to determine precisely the subtle spin boundary condition. A comprehensive picture for quantized spin excitations in a ferromagnet with finite size is thereby established. The dispersions of the quantized spin wave modes have two different branches separated by the saturation magnetization.Comment: 4 pages, 3 figure

    Excitation Theory for Space-Dispersive Active Media Waveguides

    Full text link
    A unified electrodynamic approach to the guided-wave excitation theory is generalized to the waveguiding structures containing a hypothetical space-dispersive medium with drifting charge carriers possessing simultaneously elastic, piezoelectric and magnetic properties. Substantial features of our electrodynamic approach are: (i) the allowance for medium losses and (ii) the separation of potential fields peculiar to the slow quasi-static waves. It is shown that the orthogonal complementary fields appearing inside the external source region are just associated with a contribution of the potential fields inherent in exciting sources. Taking account of medium losses converts the usual orthogonality relation into a novel form called the quasi-orthogonality relation. It is found that the separation of potential fields reveals the fine structure of interaction between the exciting sources and mode eigenfields: in addition to the exciting currents interacting with the curl fields, the exciting charges and the double charge (surface dipole) layers appear to interact with the quasi-static potentials and the displacement currents, respectively.Comment: LaTeX 2.09, 28 pages with mathematical appendi

    Anomalous behavior of spin wave resonances in Ga_{1-x}Mn_{x}As thin films

    Full text link
    We report ferromagnetic and spin wave resonance absorption measurements on high quality epitaxially grown Ga_{1-x}Mn_{x}As thin films. We find that these films exhibit robust ferromagnetic long-range order, based on the fact that up to seven resonances are detected at low temperatures, and the resonance structure survives to temperatures close to the ferromagnetic transition. On the other hand, we observe a spin wave dispersion which is linear in mode number, in qualitative contrast with the quadratic dispersion expected for homogeneous samples. We perform a detailed numerical analysis of the experimental data and provide analytical calculations to demonstrate that such a linear dispersion is incompatible with uniform magnetic parameters. Our theoretical analysis of the ferromagnetic resonance data, combined with the knowledge that strain-induced anisotropy is definitely present in these films, suggests that a spatially dependent magnetic anisotropy is the most likely reason behind the anomalous behavior observed.Comment: 9 pages, including 6 figure

    1.3 mm Wavelength VLBI of Sagittarius A*: Detection of Time-Variable Emission on Event Horizon Scales

    Get PDF
    Sagittarius A*, the ~4 x 10^6 solar mass black hole candidate at the Galactic Center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength Very Long Baseline Interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the ARO/SMT on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924-292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3 mm VLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.Comment: 8 pages, submitted to ApJ

    On-chain electrodynamics of metallic (TMTSF)_2 X salts: Observation of Tomonaga-Luttinger liquid response

    Full text link
    We have measured the electrodynamic response in the metallic state of three highly anisotropic conductors, (TMTSF)_2 X, where X=PF_6, AsF_6, or ClO_4, and TMTSF is the organic molecule tetramethyltetraselenofulvalene. In all three cases we find dramatic deviations from a simple Drude response. The optical conductivity has two features: a narrow mode at zero frequency, with a small spectral weight, and a mode centered around 200 cm^{-1}, with nearly all of the spectral weight expected for the relevant number of carriers and single particle bandmass. We argue that these features are characteristic of a nearly one-dimensional half- or quarter-filled band with Coulomb correlations, and evaluate the finite energy mode in terms of a one-dimensional Mott insulator. At high frequencies (\hbar\omega > t_\perp, the transfer integral perpendicular to the chains), the frequency dependence of the optical conductivity \sigma_1(\omega) is in agreement with calculations based on an interacting Tomonaga-Luttinger liquid, and is different from what is expected for an uncorrelated one-dimensional semiconductor. The zero frequency mode shows deviations from a simple Drude response, and can be adequately described with a frequency dependent mass and relaxation rate.Comment: 12 pages, 7 figures, RevTeX; minor corrections to text and references; To be published in Phys. Rev. B, 15 July 199

    A VLBI receiving system for the South Pole Telescope

    Full text link
    The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important position in the array, greatly increasing its north-south extent and therefore its resolution. The South Pole Telescope (SPT) is a 10-meter diameter, millimeter-wavelength telescope equipped for bolometric observations of the cosmic microwave background. To enable VLBI observations with the SPT we have constructed a coherent signal chain suitable for the South Pole environment. The dual-frequency receiver incorporates state-of-the-art SIS mixers and is installed in the SPT receiver cabin. The VLBI signal chain also includes a recording system and reference frequency generator tied to a hydrogen maser. Here we describe the SPT VLBI system design in detail and present both the lab measurements and on-sky results.Comment: 14 pages, 11 figures, to appear in the Proceedings of the SPIE (SPIE Astronomical Telescopes + Instrumentation 2018; Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX

    First 230 GHz VLBI Fringes on 3C 279 using the APEX Telescope

    Full text link
    We report about a 230 GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). We installed VLBI equipment and measured the APEX station position to 1 cm accuracy (1 sigma). We then observed 3C 279 on 2012 May 7 in a 5 hour 230 GHz VLBI track with baseline lengths of 2800 Mλ\lambda to 7200 Mλ\lambda and a finest fringe spacing of 28.6 micro-arcseconds. Fringes were detected on all baselines with SNRs of 12 to 55 in 420 s. The correlated flux density on the longest baseline was ~0.3 Jy/beam, out of a total flux density of 19.8 Jy. Visibility data suggest an emission region <38 uas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 10^10 K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ~38 uas. With APEX the angular resolution of 230 GHz VLBI improves to 28.6 uas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40 uas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.Comment: accepted for publication in A&

    Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*

    Get PDF
    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of ∼\sim30 μ\muas (∼\sim3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼\sim4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼\sim3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
    • …
    corecore