11 research outputs found

    Miniaturized Sample Preparation and Rapid Detection of Arsenite in Contaminated Soil Using a Smartphone

    No full text
    Conventional methods for analyzing heavy metal contamination in soil and water generally require laboratory equipped instruments, complex procedures, skilled personnel and a significant amount of time. With the advancement in computing and multitasking performances, smartphone-based sensors potentially allow the transition of the laboratory-based analytical processes to field applicable, simple methods. In the present work, we demonstrate the novel miniaturized setup for simultaneous sample preparation and smartphone-based optical sensing of arsenic As(III) in the contaminated soil. Colorimetric detection protocol utilizing aptamers, gold nanoparticles and NaCl have been optimized and tested on the PDMS-chip to obtain the high sensitivity with the limit of detection of 0.71 ppm (in the sample) and a correlation coefficient of 0.98. The performance of the device is further demonstrated through the comparative analysis of arsenic-spiked soil samples with standard laboratory method, and a good agreement with a correlation coefficient of 0.9917 and the average difference of 0.37 ppm, are experimentally achieved. With the android application on the device to run the experiment, the whole process from sample preparation to detection is completed within 3 hours without the necessity of skilled personnel. The approximate cost of setup is estimated around 1 USD, weight 55 g. Therefore, the presented method offers the simple, rapid, portable and cost-effective means for onsite sensing of arsenic in soil. Combined with the geometric information inside the smartphones, the system will allow the monitoring of the contamination status of soils in a nation-wide manner

    Investigation of Iron Ore Mineral Distribution Using Aero-Magnetic Exploration Techniques: Case Study at Pocheon, Korea

    No full text
    We present our aeromagnetic survey results from an investigation of the iron ore mineral distribution in Pocheon, Korea, in the west-central area of the Korean Peninsula. A manned aeromagnetic system using a helicopter for regional exploration and an unmanned aeromagnetic system using a multicopter for high-resolution exploration were used for the survey. The inversion results of the magnetic data confirmed the possibility of the existence of a new iron ore body. Drilling was carried out based on inversion results and drilling revealed amphibolite including iron ore, as indicated by a strong magnetic response. The position and depth of the iron ore were consistent with the interpretation results of the magnetic data

    Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone

    Get PDF
    AbstractWe present a simple smartphone-based measurement system consisting of a smartphone, a holder, and a lateral flow immune strip. The smartphone camera and light source were used to read the colorimetric signal from the lateral flow assay. A smartphone application was written and installed onto the smartphone. Various concentrations of cortisol were successfully measured using the images captured by the smartphone. Measurement of human salivary cortisol was then demonstrated using the lateral flow assay and the quantitative analysis was validated with the smartphone. The system was further evaluated using human saliva, demonstrating an accurate and reproducible platform for rapid and point-of-care quantification of cortisol using a smartphone-based measurement system

    PLC-Based Integrated Refractive Index Sensor Probe with Partially Exposed Waveguide

    No full text
    This paper proposes a simple, high-efficiency refractive index (RI) sensor, with a structure based on the planar lightwave circuit (PLC) probe type. The optical sensor has a 1 × 2 splitter structure with reference and sensing channels, each consisting of a U-shaped waveguide structure that is configured by connecting C bends. This design allows for the sensor device to have a probe structure wherein the surface interconnected with activity devices (i.e., an optical source and optical detector) is placed on one side. The reference channel is bent with a minimum optical loss, and the sensing channel has a bent structure, involving a C-bend waveguide with a maximum loss. The C-bend waveguide with a maximum loss is conformally aligned to have a trench structure with the same bending radius, designed to selectively expose the sidewall of the core layer. The local index contrast varies depending on the material in contact with the trench, resulting in a change in the optical output power of the waveguide. The sensitivity of the proposed sensor was 0 and 2070 μW/refractive index unit (RIU) for the reference and sensing channels, respectively, as the RI changed from 1.385 to 1.445 at a 1550 nm wavelength. These results suggest that the proposed structure enables efficient RI measurement through the use of a simple dip-type method

    The effects of image acquisition control of digital X-ray system on radiodensity quantification

    Get PDF
    Objectives Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the under-exposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient
    corecore