95 research outputs found

    Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains

    Get PDF
    Sestrins are stress-inducible metabolic regulators with two seemingly unrelated but physiologically important functions: reduction of reactive oxygen species (ROS) and inhibition of the mechanistic target of rapamycin complex 1 (mTORC1). How Sestrins fulfil this dual role has remained elusive so far. Here we report the crystal structure of human Sestrin2 (hSesn2), and show that hSesn2 is twofold pseudo-symmetric with two globular subdomains, which are structurally similar but functionally distinct from each other. While the N-terminal domain (Sesn-A) reduces alkylhydroperoxide radicals through its helix–turn–helix oxidoreductase motif, the C-terminal domain (Sesn-C) modified this motif to accommodate physical interaction with GATOR2 and subsequent inhibition of mTORC1. These findings clarify the molecular mechanism of how Sestrins can attenuate degenerative processes such as aging and diabetes by acting as a simultaneous inhibitor of ROS accumulation and mTORC1 activation

    Helicobacter pylori infection combined with DENA revealed altered expression of p53 and 14-3-3 isoforms in Gulo−/− mice

    Get PDF
    AbstractUnlike most other mammals, human bodies do not have the ability to synthesize vitamin C inside of their own bodies. Therefore, humans must obtain vitamin C through daily diet. Gulo−/− mice strain is known with deficiency, in which vitamin C intake can be controlled by diet like human, and would be valuable for investigating the molecular mechanism of various diseases. In the present study, we established Gulo−/− mice model and investigated the differentially expressed proteins in stomach tissue of Gulo−/− mice after Helicobacter pylori-infected, and followed by DENA, using immunohistochemistry and proteomic approach. The results of immunohistochemistry analysis of stomach tissue showed that the tumor suppressor, p53 protein, expression was significantly decreased (p<0.05) but not messenger RNA (mRNA) transcriptional level, and 14-3-3ε, 14-3-3δ, Ki-67 and cleaved caspase 3 expressions were significantly increased (p<0.05) by H. Pylori infection, and followed by DENA treatment in Gulo−/− mice. Moreover, knockdown of 14-3-3 isoforms (14-3-3ε, 14-3-3σ, 14-3-3ζ and 14-3-3η) were significantly increased sub-G1 phase (characteristics of apoptosis) in AGS cells and, phenotypic changes like cell shrinkage, density and cleaved nuclei were also observed. Proteome analyses showed that 14-3-3σ, 14-3-3η, and tropomyosin alpha-1 chain were down-regulated, and Hspd1 protein and HSC70 were up-regulated after H. Pylori-infection, and followed by DENA. The combined results of immunohistochemistry and proteomic analysis suggest that H. pylori altered the p53 and 14-3-3 isoforms expression and DENA further enhanced the H. pylori effect, which might be involved in carcinogenesis and metastasis of gastric cancer on Gulo−/− mice

    Tristetraprolin inhibits the growth of human glioma cells through downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor mRNAs

    Get PDF
    Urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) play a major role in the infiltrative growth of glioblastoma. Downregulatoion of the uPA and uPAR has been reported to inhibit the growth glioblastoma. Here, we demonstrate that tristetraprolin (TTP) inhibits the growth of U87MG human glioma cells through downregulation of uPA and uPAR. Our results show that expression level of TTP is inversely correlated with those of uPA and uPAR in human glioma cells and tissues. TTP binds to the AU-rich elements within the 3&apos; untranslated regions of uPA and uPAR and overexpression of TTP decreased the expression of uPA and uPAR through enhancing the degradation of their mRNAs. In addition, overexpression of TTP inhibited the growth and invasion of U87MG cells. Our findings implicate that TTP can be used as a promising therapeutic target to treat human glioma

    Loss of Heterozygosity on Chromosomes 3p, 8p, 9p and 17p in the Progression of Squamous Cell Carcinoma of the Larynx

    Get PDF
    Previous molecular genetic studies of laryngeal squamous cell carcinoma (SCC)have shown certain chromosomal regions with recurring alterations. But studies of sequential molecular alterations and genetic progression model of laryngeal SCC have not been clearly defined. To identify the chromosomal alterations associated with the carcinogenesis of laryngeal SCC, we analyzed genomic DNA from microdissected squamous metaplasia, squamous dysplasia, invasive SCC, and metastatic carcinoma samples from 22 laryngeal SCC patients for loss of heterozygosity (LOH) at microsatellite loci. Ten microsatellite markers on chromosome 3p, 8p, 9p, and 17p were used. LOH at 9p21 was observed in the all stages including squamous metaplasia, squamous dysplasia, invasive SCC and metastatic carcinoma. LOH at 17p13.1, 3p25 and 3p14.2 was observed from the squamous dysplasia, invasive SCC and metastatic carcinoma. LOH at 8p21.3-p22 was observed mainly from the invasive SCC and metastatic carcinoma. The results suggest that 9p21 in the early event, 17p13.1, 3p25 and 3p14.2 in the intermediate event and 8p21.3-p22 in the late event may be involved in the laryngeal carcinogenesis

    Prospective study of oncologic outcomes after laparoscopic modified complete mesocolic excision for non-metastatic right colon cancer (PIONEER study): study protocol of a multicentre single-arm trial

    Get PDF
    Abstract Background The introduction of complete mesocolic excision (CME) with central vascular ligation (CVL) for right-sided colon cancer has improved the oncologic outcomes. Recently, we have introduced a modified CME (mCME) procedure that keeps the same principles as the originally described CME but with a more tailored approach. Some retrospective studies have reported the favourable oncologic outcomes of laparoscopic mCME for right-sided colon cancer; however, no prospective multicentre study has yet been conducted. Methods This study is a multi-institutional, prospective, single-arm study evaluating the oncologic outcomes of laparoscopic mCME for adenocarcinoma arising from the right side of the colon. A total of 250 patients will be recruited from five tertiary referral centres in South Korea. The primary outcome of this study is 3-year disease-free survival. Secondary outcome measures include 3-year overall survival, incidence of surgical complications, completeness of mCME, and distribution of metastatic lymph nodes. The quality of laparoscopic mCME will be assessed on the basis of photographs of the surgical specimen and the operation field after the completion of lymph node dissection. Discussion This is a prospective multicentre study to evaluate the oncologic outcomes of laparoscopic mCME for right-sided colon cancer. To the best of our knowledge, this will be the first study to prospectively and objectively assess the quality of laparoscopic mCME. The results will provide more evidence about oncologic outcomes with respect to the quality of laparoscopic mCME in right-sided colon cancer. Trial registration ClinicalTrials.gov ID: NCT03992599 (June 20, 2019). The posted information will be updated as needed to reflect protocol amendments and study progress

    Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually No Mitochondrial Function but Not with Pathogenic mtDNA Mutations

    Get PDF
    It has been reported that human mesenchymal stem cells (MSCs) can transfer mitochondria to the cells with severely compromised mitochondrial function. We tested whether the reported intercellular mitochondrial transfer could be replicated in different types of cells or under different experimental conditions, and tried to elucidate possible mechanism. Using biochemical selection methods, we found exponentially growing cells in restrictive media (uridine− and bromodeoxyuridine [BrdU]+) during the coculture of MSCs (uridine-independent and BrdU-sensitive) and 143B-derived cells with severe mitochondrial dysfunction induced by either long-term ethidium bromide treatment or short-term rhodamine 6G (R6G) treatment (uridine-dependent but BrdU-resistant). The exponentially growing cells had nuclear DNA fingerprint patterns identical to 143B, and a sequence of mitochondrial DNA (mtDNA) identical to the MSCs. Since R6G causes rapid and irreversible damage to mitochondria without the removal of mtDNA, the mitochondrial function appears to be restored through a direct transfer of mitochondria rather than mtDNA alone. Conditioned media, which were prepared by treating mtDNA-less 143B ρ0 cells under uridine-free condition, induced increased chemotaxis in MSC, which was also supported by transcriptome analysis. Cytochalasin B, an inhibitor of chemotaxis and cytoskeletal assembly, blocked mitochondrial transfer phenomenon in the above condition. However, we could not find any evidence of mitochondrial transfer to the cells harboring human pathogenic mtDNA mutations (A3243G mutation or 4,977 bp deletion). Thus, the mitochondrial transfer is limited to the condition of a near total absence of mitochondrial function. Elucidation of the mechanism of mitochondrial transfer will help us create a potential cell therapy-based mitochondrial restoration or mitochondrial gene therapy for human diseases caused by mitochondrial dysfunction
    corecore