15 research outputs found

    Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation

    No full text
    Abstract Background Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a ‘cold temperature sensor’ in vivo. Although it is known that agonists of this ‘cold temperature sensor’, such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. Results We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. Conclusions The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8’s role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.</p

    Pharmacologic Characterization of AMG 334, a Potent and Selective Human Monoclonal Antibody against the Calcitonin Gene-Related Peptide Receptor

    No full text
    ABSTRACT Therapeutic agents that block the calcitonin gene-related peptide (CGRP) signaling pathway are a highly anticipated and promising new drug class for migraine therapy, especially after reports that small-molecule CGRP-receptor antagonists are efficacious for both acute migraine treatment and migraine prevention. Using XenoMouse technology, we successfully generated AMG 334, a fully human monoclonal antibody against the CGRP receptor. Here we show that AMG 334 competes with [ 125 I]-CGRP binding to the human CGRP receptor, with a K i of 0.02 nM. AMG 334 fully inhibited CGRP-stimulated cAMP production with an IC 50 of 2.3 nM in cell-based functional assays (human CGRP receptor) and was 5000-fold more selective for the CGRP receptor than other human calcitonin family receptors, including adrenomedullin, calcitonin, and amylin receptors. The potency of AMG 334 at the cynomolgus monkey (cyno) CGRP receptor was similar to that at the human receptor, with an IC 50 of 5.7 nM, but its potency at dog, rabbit, and rat receptors was significantly reduced (.5000-fold). Therefore, in vivo target coverage of AMG 334 was assessed in cynos using the capsaicin-induced increase in dermal blood flow model. AMG 334 dose-dependently prevented capsaicin-induced increases in dermal blood flow on days 2 and 4 postdosing. These results indicate AMG 334 is a potent, selective, full antagonist of the CGRP receptor and show in vivo dose-dependent target coverage in cynos. AMG 334 is currently in clinical development for the prevention of migraine

    Transient Receptor Potential Channel Ankyrin-1 Is Not a Cold Sensor for Autonomic Thermoregulation in Rodents

    No full text
    The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(−/−) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(−/−) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC(50) against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC(50) value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents

    Fused Piperidines as a Novel Class of Potent and Orally Available Transient Receptor Potential Melastatin Type 8 (TRPM8) Antagonists

    No full text
    The transient receptor potential melastatin type 8 (TRPM8) is a nonselective cation channel primarily expressed in a subpopulation of sensory neurons that can be activated by a wide range of stimuli, including menthol, icilin, and cold temperatures (<25 °C). Antagonism of TRPM8 is currently under investigation as a new approach for the treatment of pain. As a result of our screening efforts, we identified tetrahydrothienopyridine <b>4</b> as an inhibitor of icilin-induced calcium influx in CHO cells expressing recombinant rat TRPM8. Exploration of the structure–activity relationships of <b>4</b> led to the identification of a potent and orally bioavailable TRPM8 antagonist, tetrahydroisoquinoline <b>87</b>. Compound <b>87</b> demonstrated target coverage in vivo after oral administration in a rat pharmacodynamic model measuring the prevention of icilin-induced wet-dog shakes (WDS)

    Optimization of a Novel Quinazolinone-Based Series of Transient Receptor Potential A1 (TRPA1) Antagonists Demonstrating Potent in Vivo Activity

    No full text
    There has been significant interest in developing a transient receptor potential A1 (TRPA1) antagonist for the treatment of pain due to a wealth of data implicating its role in pain pathways. Despite this, identification of a potent small molecule tool possessing pharmacokinetic properties allowing for robust in vivo target coverage has been challenging. Here we describe the optimization of a potent, selective series of quinazolinone-based TRPA1 antagonists. High-throughput screening identified <b>4</b>, which possessed promising potency and selectivity. A strategy focused on optimizing potency while increasing polarity in order to improve intrinisic clearance culminated with the discovery of purinone <b>27</b> (AM-0902), which is a potent, selective antagonist of TRPA1 with pharmacokinetic properties allowing for >30-fold coverage of the rat TRPA1 IC<sub>50</sub> in vivo. Compound <b>27</b> demonstrated dose-dependent inhibition of AITC-induced flinching in rats, validating its utility as a tool for interrogating the role of TRPA1 in in vivo pain models

    Optimization of Potency and Pharmacokinetic Properties of Tetrahydroisoquinoline Transient Receptor Potential Melastatin 8 (TRPM8) Antagonists

    No full text
    Transient receptor potential melastatin 8 (TRPM8) is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system. TRPM8 is the predominant mammalian cold temperature thermosensor and is activated by cold temperatures ranging from 8 to 25 °C and cooling compounds such as menthol or icilin. TRPM8 antagonists are being pursued as potential therapeutics for treatment of pain and bladder disorders. This manuscript outlines new developments in the SAR of a lead series of 1,2,3,4-tetrahydroisoquinoline derivatives with emphasis on strategies to improve pharmacokinetic properties and potency. Selected compounds were profiled in two TRPM8 target-specific in vivo coverage models in rats (the icilin-induced wet dog shake model and the cold pressor test). Compound <b>45</b> demonstrated robust efficacy in both pharmacodynamic models with ED<sub>90</sub> values <3 mg/kg
    corecore