56 research outputs found

    Will passive protection save Congo forests?

    Get PDF
    Central Africa\u27s tropical forests are among the world\u27s largest carbon reserves. Historically, they have experienced low rates of deforestation. Pressures to clear land are increasing due to development of infrastructure and livelihoods, foreign investment in agriculture, and shifting land use management, particularly in the Democratic Republic of Congo (DRC). The DRC contains the greatest area of intact African forests. These store approximately 22 billion tons of carbon in aboveground live biomass, yet only 10% are protected. Can the status quo of passive protection - forest management that is low or nonexistent - ensure the preservation of this forest and its carbon? We have developed the SimCongo model to simulate changes in land cover and land use based on theorized policy scenarios from 2010 to 2050. Three scenarios were examined: the first (Historical Trends) assumes passive forest protection; the next (Conservation) posits active protection of forests and activation of the national REDD+ action plan, and the last (Agricultural Development) assumes increased agricultural activities in forested land with concomitant increased deforestation. SimCongo is a cellular automata model based on Bayesian statistical methods tailored for the DRC, built with the Dinamica-EGO platform. The model is parameterized and validated with deforestation observations from the past and runs the scenarios from 2010 through 2050 with a yearly time step. We estimate the Historical Trends trajectory will result in average emissions of 139 million t CO2 year-1 by the 2040s, a 15% increase over current emissions. The Conservation scenario would result in 58% less clearing than Historical Trends and would conserve carbon-dense forest and woodland savanna areas. The Agricultural Development scenario leads to emissions of 212 million t CO2 year-1 by the 2040s. These scenarios are heuristic examples of policy\u27s influence on forest conservation and carbon storage. Our results suggest that 1) passive protection of the DRC\u27s forest and woodland savanna is insufficient to reduce deforestation; and 2): enactment of a REDD+ plan or similar conservation measure is needed to actively protect Congo forests, their unique ecology, and their important role in the global carbon cycle

    Effects of human demand on conservation planning for biodiversity and ecosystem services

    Get PDF
    Safeguarding ecosystem services and biodiversity is critical to achieving sustainable development. To date, ecosystem services quantification has focused on the biophysical supply of services with less emphasis on human beneficiaries (i.e., demand). Only when both occur do ecosystems benefit people, but demand may shift ecosystem service priorities toward human-dominated landscapes that support less biodiversity. We quantified how accounting for demand affects the efficiency of conservation in capturing both human benefits and biodiversity by comparing conservation priorities identified with and without accounting for demand. We mapped supply and benefit for 3 ecosystem services (flood mitigation, crop pollination, and nature-based recreation) by adapting existing ecosystem service models to include and exclude factors representing human demand. We then identified conservation priorities for each with the conservation planning program Marxan. Particularly for flood mitigation and crop pollination, supply served as a poor proxy for benefit because demand changed the spatial distribution of ecosystem service provision. Including demand when jointly targeting biodiversity and ecosystem service increased the efficiency of conservation efforts targeting ecosystem services without reducing biodiversity outcomes. Our results highlight the importance of incorporating demand when quantifying ecosystem services for conservation planning

    Mining drives extensive deforestation in the Brazilian Amazon

    Get PDF
    Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil\u27s Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km2 of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation

    Disaggregating the evidence linking biodiversity and ecosystem services

    Get PDF
    Ecosystem services (ES) are an increasingly popular policy framework for connecting biodiversity with human well-being. These efforts typically assume that biodiversity and ES covary, but the relationship between them remains remarkably unclear. Here we analyse \u3e500 recent papers and show that reported relationships differ among ES, methods of measuring biodiversity and ES, and three different approaches to linking them (spatial correlations, management comparisons and functional experiments). For spatial correlations, biodiversity relates more strongly to measures of ES supply than to resulting human benefits. For management comparisons, biodiversity of ñ € service providers\u27 predicts ES more often than biodiversity of functionally unrelated taxa, but the opposite is true for spatial correlations. Functional experiments occur at smaller spatial scales than management and spatial studies, which show contrasting responses to scale. Our results illuminate the varying dynamics relating biodiversity to ES, and show the importance of matching management efforts to the most relevant scientific evidence

    Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services

    Get PDF
    © The Ecological Society of America Biodiversity offsets are most commonly used to mitigate the adverse impacts of development on biodiversity, but some offsets are now also designed to support ecosystem services (ES) goals. Here, we assemble a global database of biodiversity offsets (n = 70) to show that 41% already take ES into consideration, with the objective of enhancing cultural, regulating, and provisioning services. We found that biodiversity offsets were more likely to consider ES when (1) development projects reported impacts on services, (2) offsets had voluntary biodiversity goals, and (3) conservation organizations were involved. However, offsets that considered ES were similar in design (eg offsetting approach, extent, and location) to offsets focused solely on biodiversity, suggesting that including ES goals may represent an attempt to strengthen community support for development projects, rather than to offset known ES impacts. We also found that 34% of all offsets displaced people and negatively affected livelihoods. Therefore, when biodiversity and ES are linked, current practices may not actually improve outcomes, instead incurring additional costs to communities and companies

    A counterfactual approach to measure the impact of wet grassland conservation on UK breeding bird populations

    Get PDF
    Wet grassland wader populations in the United Kingdom have experienced severe declines over the last three decades. To help mitigate these declines, the Royal Society for the Protection of Birds (RSPB) has restored and managed lowland wet grassland nature reserves to benefit these and other species. However, the impact that these reserves have on bird population trends has not been experimentally evaluated, as appropriate control populations do not readily exist. In this study, we compare population trends from 1994 ‐ 2018 for five bird species of conservation concern that breed on these nature reserves with counterfactual trends using matched breeding bird survey observations. Our results showed positive effects of conservation interventions for all four wader species that these reserves aim to benefit: Lapwing (Vanellus vanellus), Redshank (Tringa totanus), Curlew (Numenius arquata) and Snipe (Gallinago gallinago). There was no positive effect of conservation interventions on reserves for the passerine, Yellow Wagtail (Motacilla flava). We compared reserve trends with three different counterfactuals, based on different scenarios of how reserve populations could have developed in the absence of conservation, and found that reserve trends performed better regardless of the counterfactual used. Our approach using monitoring data to produce valid counterfactual controls is a broadly applicable method allowing large‐scale evaluation of conservation impact

    Using technology to improve the management of development impacts on biodiversity

    Get PDF
    Funder: The research was funded through a long‐term collaboration between Conservational International and Chevron.Abstract: The mitigation hierarchy (MH) is a prominent tool to help businesses achieve no net loss or net gain outcomes for biodiversity. Technological innovations offer benefits for business biodiversity management, yet the range and continued evolution of technologies creates a complex landscape that can be difficult to navigate. Using literature review, online surveys, and semi‐structured interviews, we assess technologies that can improve application of the MH. We identify six categories (mobile survey, fixed survey, remote sensing, blockchain, data analysis, and enabling technologies) with high feasibility and/or relevance to (i) aid direct implementation of mitigation measures and (ii) enhance biodiversity surveys and monitoring, which feed into the design of interventions including avoidance and minimization measures. At the interface between development and biodiversity impacts, opportunities lie in businesses investing in technologies, capitalizing on synergies between technology groups, collaborating with conservation organizations to enhance institutional capacity, and developing practical solutions suited for widespread use

    Offsetting the impacts of mining to achieve no net loss of native vegetation

    No full text
    Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land-use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like-for-like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like-for-like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required
    • 

    corecore