39 research outputs found

    Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability

    Full text link
    [EN] Aligned mats of poly(lactic acid) (PLA) nanofibers containing nanosized hydroxyapatite filler have been obtained via electrospinning onto a rotating mandrel. Their structure and morphology have been characterized as a function of the production parameters, by SEM, DSC, DMA and WAXS, with emphasis in the effects of the take-up velocity. SEM, DSC and X-ray diffraction studies confirmed a reduction in fiber diameter, an increase of fiber orientation and a highly crystalline structure of the mats collected at higher speed due to the stretching produced during the process. Double melting behavior was observed, suggesting the presence of two crystalline forms. Moreover the higher storage modulus (E¿ modulus), and glass transition temperatures of the higher speed collected mats were correlated with an enhancement in the thermal stability and nanofiller distribution. © 2012 Elsevier Ltd. All rights reserved.This project has been supported by Project MAT2010/21494-C03 of Spanish Ministry for Science and Innovation (MICINN). AS acknowledges the support of FPU grant from MED (MED-FPU; AP2009-2482).Sonseca Olalla, A.; Peponi, L.; Sahuquillo, O.; Kenny, J.; Giménez Torres, E. (2012). Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability. Polymer Degradation and Stability. 97(10):2052-2059. https://doi.org/10.1016/j.polymdegradstab.2012.05.009S20522059971

    Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin

    Full text link
    [EN] Efforts to fabricate low-power up converting solid-state systems have rapidly increased in the past decade because of their possible application in several fields such as bio-imaging, drug delivery, solar harvesting or displays. The synthesis of upconverting cross-linked polyester rubbers with covalently tethered chromophores is presented here. Cross-linked films were prepared by reacting a poly(mannitol- sebacate) pre-polymer with 9,10-bis(4-hydroxymethylphenyl) anthracene (DPA-(CH2OH)2) and palladium mesoporphyrin IX. These chromophores served as emitters and sensitizers, respectively, and through a cascade of photophysical events, resulted in an anti-Stokes shifted emission. Indeed, blue emission (*440 nm) of these solid materials was detected upon excitation at 543 nm with a green laser and the power dependence of integrated unconverted intensity versus excitation was examined. The new materials display upconversion at power densities as low as 32 mW/cm2, and do not display phase de-mixing, which has been identified as an obstacle in rubbery blends comprising untethered chromophores.The authors are thankful for the financial support of the Swiss National Science Foundation (200021_13540/1 and 200020_152968), Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03) and the Adolphe Merkle Foundation. The authors thank Prof. Christoph Weder for his help and support.Lee, S.; Sonseca, A.; Vadrucci, R.; Giménez Torres, E.; Foster, E.; Simon, YC. (2014). Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin. Journal of Inorganic and Organometallic Polymers. 24(5):898-903. https://doi.org/10.1007/s10904-014-0063-7S898903245C. A. Parker, C. G. Hatchard. P. Chem. Soc. London, 386–387 (1962)Y.C. Simon, C. Weder, J. Mater. Chem. 22, 20817–20830 (2012)J.Z. Zhao, S.M. Ji, H.M. Guo, Rsc Adv. 1, 937–950 (2011)C. Reinhard, R. Valiente, H.U. Gudel, J. Phys. Chem. B 106, 10051–10057 (2002)M. Haase, H. Schafer, Angew. Chem. Int. Edit. 50, 5808–5829 (2011)W.H. Wu, J.Z. Zhao, J.F. Sun, S. Guo, J. Org. Chem. 77, 5305–5312 (2012)T.T. Zhao, X.Q. Shen, L. Li, Z.P. Guan, N.Y. Gao, P.Y. Yuan, S.Q. Yao, Q.H. Xu, G.Q. Xu, Nanoscale 4, 7712–7719 (2012)C. Cepraga, T. Gallavardin, S. Marotte, P.H. Lanoe, J.C. Mulatier, F. Lerouge, S. Parola, M. Lindgren, P.L. Baldeck, J. Marvel, O. Maury, C. Monnereau, A. Favier, C. Andraud, Y. Leverrier, M.T. Charreyre, Polym. Chem. 4, 61–67 (2013)J. Qian, D. Wang, F.H. Cai, Q.Q. Zhan, Y.L. Wang, S.L. He, Biomaterials 33, 4851–4860 (2012)S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, New J. Phys. 10, 013007 (2008)S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Phys. Rev. Lett. 97, 143903 (2006)M. Samoc, A. Samoc, B. Luther-Davies, Opt. Express 11, 1787–1792 (2003)A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Phys. Rev. B 78(195112), 1–5 (2008)A. Monguzzi, R. Tubino, F. Meinardi, Phys. Rev. B 77, 155122-1-4 (2008)T.N. Singh-Rachford, R.R. Islangulov, F.N. Castellano, J. Phys. Chem. A 112, 3906–3910 (2008)C. Wohnhaas, A. Turshatov, V. Mailander, S. Lorenz, S. Baluschev, T. Miteva, K. Landfester, Macromol. Biosci. 11, 772–778 (2011)R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, J. Am. Chem. Soc. 129, 12652–12653 (2007)Y.C. Simon, C. Weder, Chimia 66, 878 (2012)Y.C. Simon, S. Bai, M.K. Sing, H. Dietsch, M. Achermann, C. Weder, Macromol. Rapid Commun. 33, 498–502 (2012)S.H. Lee, J.R. Lott, Y.C. Simon, C. Weder, J. Mater. Chem. C 1, 5142–5148 (2013)S. Baluschev, P.E. Keivanidis, G. Wegner, J. Jacob, A.C. Grimsdale, K. Mullen, T. Miteva, A. Yasuda, G. Nelles, Appl. Phys. Lett. 86, 1–3 (2005)S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Mullen, G. Wegner, ChemPhysChem 6, 1250–1253 (2005)P.C. Boutin, K.P. Ghiggino, T.L. Kelly, R.P. Steer, J. Phys. Chem. Lett. 4, 4113–4118 (2013)C.A. Sundback, J.Y. Shyu, Y.D. Wang, W.C. Faquin, R.S. Langer, J.P. Vacanti, T.A. Hadlock, Biomaterials 26, 5454–5464 (2005)Z.J. Sun, C. Chen, M.Z. Sun, C.H. Ai, X.L. Lu, Y.F. Zheng, B.F. Yang, D.L. Dong, Biomaterials 30, 5209–5214 (2009)A. Mahdavi, L. Ferreira, C. Sundback, J.W. Nichol, E.P. Chan, D.J.D. Carter, C.J. Bettinger, S. Patanavanich, L. Chignozha, E. Ben-Joseph, A. Galakatos, H. Pryor, I. Pomerantseva, P.T. Masiakos, W. Faquin, A. Zumbuehl, S. Hong, J. Borenstein, J. Vacanti, R. Langer, J.M. Karp, Proc. Natl. Acad. Sci. USA 105, 2307–2312 (2008)A. Sonseca, S. Camarero-Espinosa, L. Peponi, C. Weder, E.J. Foster, J.M. Kenny, E. Giménez, J. Polym. Sci. Part A. (2014). doi: 10.1002/pola.27367R. Vadrucci, C. Weder, Y.C. Simon, J. Mater. Chem. C 2, 2837–2841 (2014)F.A. Lara, U. Lins, G.H. Bechara, P.L. Oliveira, J. Exp. Biol. 208, 3093–3101 (2005)R. Maliger, P.J. Halley, J.J. Cooper-White, J. Appl. Polym. Sci. 127, 3980–3986 (2013)S. H. Lee, M. A. Ayer, R. Vadrucci, C. Weder, Y. C. Simon, Polym. Chem. (2014)T.W. Schmidt, Y.Y. Cheng, B. Fuckel, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, J. Phys. Chem. Lett. 1, 1795–1799 (2010)R. R. Islangulov, T. N. Singh, J. Lott, C. Weder, F. N. Castellano. Abstr. Pap. Am. Chem. Soc. 235 (2008

    Comparación de herramientas de evaluación de la competencia comunicación oral efectiva

    Full text link
    [EN] With the main objective of evaluating oral communication skills, a coevaluation methodology has been carried out for the last years to obtain quantitative results from data collected in the lab sessions on Materials Science, from the Bachelor degree in Chemical Engineering. The evaluation methodology followed is focus on students encouragement to participate more actively in the continuous learning of the subject. Students were asked to prepare oral presentations to explain to the class a summary about a previous lesson. These presentations were evaluated by a rubric-based method. The evaluation was done by using two different rubrics. The first one developed by the authors as a part of a Universitat Politècnica de Valencia project in educational innovation and improvement (PIME); and the second one an institutional one. The last one was developed later at UPV and also based on the experience derived from PIMEs projects. The idea is to compare both of them to prove if there is a good correlation between them.[ES] Con el objetivo principal de evaluar la competencia de comunicación oral, se ha empleado durante los últimos años una metodología basada en la coevaluación, para obtener resultados cuantitativos de las sesiones de laboratorio de la asignatura Ciencia de Materiales del Grado en Ingeniería Química. La metodología pretende que los alumnos participen más activamente la evaluación continua de la asignatura. Los alumnos tienen que preparar y realizar una presentación oral resumen de la sesión anterior al resto de sus compañeros. La presentación será evaluada usando una rúbrica como herramienta de evaluación. La evaluación fue realizada utilizando dos rúbricas diferentes, una de ellas diseñada por los autores como parte del "Proyecto de Innovación y Mejora Educativa" (PIME) de la Universitat Politècnica de València (UPV). Otra desarrollada posteriormente en la UPV, basándose en la experiencia derivada de diferentes PIMEs. Se busca comparar si hay una buena correlación entre los resultados obtenidos con ambas rúbricas.El proyecto has sido financiado por el Vicerrectorado de Estudios, Calidad y Acreditación de la Universitat Politècnica de València a través del programa PIME 2016-17 bajo la referencia A26.Sahuquillo Navarro, O.; Sonseca Olalla, A.; Martinez, J.; Carballeira, J. (2017). Comparación de herramientas de evaluación de la competencia comunicación oral efectiva. En In-Red 2017. III Congreso Nacional de innovación educativa y de docencia en red. Editorial Universitat Politècnica de València. 1293-1302. https://doi.org/10.4995/INRED2017.2017.6851OCS1293130

    Assessment of oral and written communication competences in the European Higher Education Area: a proposal of evaluation methodologies

    Full text link
    [EN] he international accreditation for the Master and Bachelor degrees offered at our university, together with the demands of the employers, have made it clear that the students’ curricula should specify not only what they have studied, but also what they are actually able to do. Although the competence based curricula approach has been used in the development of the new programmes for the Master and Bachelor degrees within the European Higher Education Area in recent years, the assessment of these competences is still a pending task. This work presents an ‘outcomes’ approach for the assessment of the oral and written communication skills within subjects related to mechanical and materials engineering. In particular, this paper proposes some rubrics developed in order to quantify the level of achievement. These rubrics are based on the evaluation of some learning outcomes that can be observed by using different strategies during the course. Conclusions about preliminary results and the difficulties found in order to create these tools are also described here.Sonseca, A.; Sahuquillo, O.; Martinez-Casas, J.; Carballeira, J.; Denia Guzmán, FD.; Rodenas, J.; Rodenas (2015). Assessment of oral and written communication competences in the European Higher Education Area: a proposal of evaluation methodologies. En 1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD' 15). Editorial Universitat Politècnica de València. 2-9. https://doi.org/10.4995/HEAD15.2015.485OCS2

    Assessment of problem-solving skills in subjects related to mechanical and materials engineering

    Full text link
    [EN] The international accreditation for the Master and Bachelor degrees offered at our university, together with the demands of the employers, have made it clear that students’ curricula should specify not only what they have studied, but also what they are actually able to do. Although the competence based curricula approach has been used in the development of the new programmes for Master and Bachelor degrees within the European Higher Education Area in recent years, the assessment of generic competences is still a pending task. This work presents an ‘outcomes’ approach for the assessment of the problem-solving capacity in subjects related to mechanical and materials engineering. In particular, this paper proposes a scale in order to quantify the level of achievement and shows some tools developed for this purpose. These tools are based on the evaluation of some learning outcomes that can be observed by using different strategies during the course. Conclusions about preliminary results and the difficulties found in order to create these tools and the scale are also described here.The authors acknowledge the financial contribution of Universitat Politècnica de València through the project PIME/2014/A/012/B.Martínez Casas, J.; Sahuquillo, O.; Sonseca Olalla, A.; Carballeira, J.; Denia Guzmán, FD.; Marco Alacid, O. (2015). Assessment of problem-solving skills in subjects related to mechanical and materials engineering. En 1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD' 15). Editorial Universitat Politècnica de València. 288-295. https://doi.org/10.4995/HEAD15.2015.48628829

    Design and use of an evaluation tool for assessment of instrumental skills within a subject related to materials science

    Full text link
    [Otros] The interest in a competence-based approach in the university, continues increasing at a considerable rate in the European Higher Education Area. Generic competences (specific of the sort of education) assessment is nowadays considered crucial to support socio-educational demands. Nevertheless, the methodologies for the assessment/evaluation of the generic competences and their inclusion in the curriculum has yet to be adequately achieved. Competency-based learning requires either the development of new evaluation tools or adjustment of the existing ones in order to support marking changes needed for new learning-oriented active methodologies. In this sense, questionnaires are an innovative educational tool for competence evaluation although the development of a solid body of knowledge is still a pending task. For this reason, this study proposes a methodological tool based on a questionnaire for rating the assessment (or not) of Specific Instrumental generic competence (instrumental skills), as defined in our university, by undergraduate students. In this regard, a practical intervention was designed to integrate the evaluation of activities related to Instrumental Skills in undergraduate students of Chemical Engineering, taking advantage of a computer practice session programmed as a part of the Materials Science subject. The appropriateness of the developed questionnaire, based on some learning outcomes, as a tool to properly score the competence of interest has been analysed by comparison of the obtained marks with the ones coming from more regular evaluation tools. The results may lead to some interesting conclusions to university professors when creating appropriate competency-based scoring questionnaires.Authors gratefully acknowledge the financial support of the Vicerrectorado de Estudios, Calidad y Acreditación and the Vicerrectorado de Recursos Digitales y Documentación of the Universitat Politècnica de València (Project PIME B/19-20/165 and Project PIME C/20-21/201) and the Instituto de Ciencias de la Educación of the Universitat Politècnica de València (EICE INTEGRAL).Andrés-Ruiz, VT.; Sonseca Olalla, A.; Sahuquillo, O.; Benavente Martínez, R. (2021). Design and use of an evaluation tool for assessment of instrumental skills within a subject related to materials science. IATED Academy. 3964-3970. https://doi.org/10.21125/edulearn.2021.0837S3964397

    Mechanical and Shape-Memory Properties of Poly(mannitol sebacate)/Cellulose Nanocrystal Nanocomposites

    Full text link
    "This is the peer reviewed version of the following article: Sonseca, Á., Camarero‐Espinosa, S., Peponi, L., Weder, C., Foster, E. J., Kenny, J. M., & Giménez, E. (2014). Mechanical and shape‐memory properties of poly (mannitol sebacate)/cellulose nanocrystal nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 52(21), 3123-3133., which has been published in final form at https://doi.org/10.1002/pola.27367. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Polyesters based on polyols and sebacic acid, known as poly(polyol sebacate)s (PPS), are attracting considerable attention, as their properties are potentially useful in the context of soft-tissue engineering applications. To overcome the drawback that PPSs generally display rather low strength and stiffness, we have pursued the preparation of nano composites based poly(mannitol sebacate) (PMS), a prominent example of this materials family, with cellulose nanocrystals (CNCs). Nanocomposites were achieved in a two-step process. A soluble, low-molecular-weight PMS pre-polymer was formed via the polycondensation reaction between sebacic acid and D-mannitol. Nanocomposites with different CNC content were prepared by solution-casting and curing under vacuum using two different profiles designed to prepare materials with low and high degree of crosslinking. The as-prepared nano composites have higher stiffness and toughness than the neat PMS matrix while maintaining a high elongation at break. A highly crosslinked nanocomposite with a CNC content of 5 wt % displays a sixfold increase in Young s modulus and a fivefold improvement in toughness. Nanocomposites also exhibit a shape memory effect with a switch temperature in the range of 15 to 45 C; in particular the materials with a thermal transition in the upper part of this range are potentially useful for biomedical applicationsThe authors gratefully acknowledge financial support received from Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03), as well as the support of FPU grant from MED (MED-FPU; AP2009-2482), JAE-Doc grant (CSIC co-financed by FSE), Swiss National Science foundation (National Research Programme 64, Project #406440_131264/1) and the Adolphe Merkle Foundation.Sonseca, A.; Camarero-Espinosa, S.; Peponi, L.; Weder, C.; Foster, E.; Kenny, JM.; Giménez Torres, E. (2014). Mechanical and Shape-Memory Properties of Poly(mannitol sebacate)/Cellulose Nanocrystal Nanocomposites. Journal of Polymer Science Part A Polymer Chemistry. 52(21):3123-3133. https://doi.org/10.1002/pola.27367S312331335221Bruggeman, J. P., de Bruin, B.-J., Bettinger, C. J., & Langer, R. (2008). Biodegradable poly(polyol sebacate) polymers. Biomaterials, 29(36), 4726-4735. doi:10.1016/j.biomaterials.2008.08.037Li, Y., Thouas, G. A., & Chen, Q.-Z. (2012). Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Advances, 2(22), 8229. doi:10.1039/c2ra20736bYang, J., Webb, A. R., Pickerill, S. J., Hageman, G., & Ameer, G. A. (2006). Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials, 27(9), 1889-1898. doi:10.1016/j.biomaterials.2005.05.106Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel Citric Acid-Based Biodegradable Elastomers for Tissue Engineering. Advanced Materials, 16(6), 511-516. doi:10.1002/adma.200306264Park, H., Seo, J., Lee, H.-Y., Kim, H.-W., Wall, I. B., Gong, M.-S., & Knowles, J. C. (2012). Synthesis of elastic biodegradable polyesters of ethylene glycol and butylene glycol from sebacic acid. Acta Biomaterialia, 8(8), 2911-2918. doi:10.1016/j.actbio.2012.04.026Sun, Z.-J., Wu, L., Lu, X.-L., Meng, Z.-X., Zheng, Y.-F., & Dong, D.-L. (2008). The characterization of mechanical and surface properties of poly (glycerol–sebacate–lactic acid) during degradation in phosphate buffered saline. Applied Surface Science, 255(2), 350-352. doi:10.1016/j.apsusc.2008.06.157Liu, Q., Tan, T., Weng, J., & Zhang, L. (2009). Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomedical Materials, 4(2), 025015. doi:10.1088/1748-6041/4/2/025015SUNDBACK, C., SHYU, J., WANG, Y., FAQUIN, W., LANGER, R., VACANTI, J., & HADLOCK, T. (2005). Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26(27), 5454-5464. doi:10.1016/j.biomaterials.2005.02.004Sun, Z.-J., Chen, C., Sun, M.-Z., Ai, C.-H., Lu, X.-L., Zheng, Y.-F., … Dong, D.-L. (2009). The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials, 30(28), 5209-5214. doi:10.1016/j.biomaterials.2009.06.007Mahdavi, A., Ferreira, L., Sundback, C., Nichol, J. W., Chan, E. P., Carter, D. J. D., … Karp, J. M. (2008). A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences, 105(7), 2307-2312. doi:10.1073/pnas.0712117105Motlagh, D., Yang, J., Lui, K. Y., Webb, A. R., & Ameer, G. A. (2006). Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 27(24), 4315-4324. doi:10.1016/j.biomaterials.2006.04.010Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602Jaafar, I. H., Ammar, M. M., Jedlicka, S. S., Pearson, R. A., & Coulter, J. P. (2010). Spectroscopic evaluation, thermal, and thermomechanical characterization of poly(glycerol-sebacate) with variations in curing temperatures and durations. Journal of Materials Science, 45(9), 2525-2529. doi:10.1007/s10853-010-4259-0Chen, Q.-Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., … Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29(1), 47-57. doi:10.1016/j.biomaterials.2007.09.010Liang, S.-L., Cook, W. D., Thouas, G. A., & Chen, Q.-Z. (2010). The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials, 31(33), 8516-8529. doi:10.1016/j.biomaterials.2010.07.105Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M., & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Progress in Materials Science, 53(1), 1-206. doi:10.1016/j.pmatsci.2007.05.002Sastri, V. R. (2010). Other Polymers. Plastics in Medical Devices, 217-262. doi:10.1016/b978-0-8155-2027-6.10009-1Chen, Q.-Z., Liang, S.-L., Wang, J., & Simon, G. P. (2011). Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1805-1818. doi:10.1016/j.jmbbm.2011.05.038Liu, Q., Wu, J., Tan, T., Zhang, L., Chen, D., & Tian, W. (2009). Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite. Polymer Degradation and Stability, 94(9), 1427-1435. doi:10.1016/j.polymdegradstab.2009.05.023Chen, Q., Jin, L., Cook, W. D., Mohn, D., Lagerqvist, E. L., Elliott, D. A., … Elefanty, A. G. (2010). Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices. Soft Matter, 6(19), 4715. doi:10.1039/c0sm00213eEichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., … Peijs, T. (2010). Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1-33. doi:10.1007/s10853-009-3874-0Clift, M. J. D., Foster, E. J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., … Weder, C. (2011). Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture. Biomacromolecules, 12(10), 3666-3673. doi:10.1021/bm200865jMendez, J., Annamalai, P. K., Eichhorn, S. J., Rusli, R., Rowan, S. J., Foster, E. J., & Weder, C. (2011). Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect. Macromolecules, 44(17), 6827-6835. doi:10.1021/ma201502kHsu, L., Weder, C., & Rowan, S. J. (2011). Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem., 21(9), 2812-2822. doi:10.1039/c0jm02383cAzizi Samir, M. A. S., Alloin, F., Sanchez, J.-Y., & Dufresne, A. (2004). Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers. Macromolecules, 37(13), 4839-4844. doi:10.1021/ma049504yGoetz, L., Foston, M., Mathew, A. P., Oksman, K., & Ragauskas, A. J. (2010). Poly(methyl vinyl ether-co-maleic acid)−Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules, 11(10), 2660-2666. doi:10.1021/bm1006695Rusli, R., & Eichhorn, S. J. (2008). Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Applied Physics Letters, 93(3), 033111. doi:10.1063/1.2963491Šturcová, A., Davies, G. R., & Eichhorn, S. J. (2005). Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers. Biomacromolecules, 6(2), 1055-1061. doi:10.1021/bm049291kDe Souza Lima, M. M., Wong, J. T., Paillet, M., Borsali, R., & Pecora, R. (2003). Translational and Rotational Dynamics of Rodlike Cellulose Whiskers. Langmuir, 19(1), 24-29. doi:10.1021/la020475zSun, C. (Calvin). (2005). True Density of Microcrystalline Cellulose. Journal of Pharmaceutical Sciences, 94(10), 2132-2134. doi:10.1002/jps.20459Kokubo, T., Kim, H.-M., & Kawashita, M. (2003). Novel bioactive materials with different mechanical properties. Biomaterials, 24(13), 2161-2175. doi:10.1016/s0142-9612(03)00044-9Bellantone, M., Williams, H. D., & Hench, L. L. (2002). Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass. Antimicrobial Agents and Chemotherapy, 46(6), 1940-1945. doi:10.1128/aac.46.6.1940-1945.2002Lecouvet, B., Horion, J., D’Haese, C., Bailly, C., & Nysten, B. (2013). Elastic modulus of halloysite nanotubes. Nanotechnology, 24(10), 105704. doi:10.1088/0957-4484/24/10/105704Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295-307. doi:10.3144/expresspolymlett.2011.30Yakobson, B. I., & Avouris, P. (s. f.). Mechanical Properties of Carbon Nanotubes. Carbon Nanotubes, 287-327. doi:10.1007/3-540-39947-x_12Lu, Q., Keskar, G., Ciocan, R., Rao, R., Mathur, R. B., Rao, A. M., & Larcom, L. L. (2006). Determination of Carbon Nanotube Density by Gradient Sedimentation. The Journal of Physical Chemistry B, 110(48), 24371-24376. doi:10.1021/jp063660kGardner, D. J., Oporto, G. S., Mills, R., & Samir, M. A. S. A. (2008). Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology, 22(5-6), 545-567. doi:10.1163/156856108x295509Koerner, H., Price, G., Pearce, N. A., Alexander, M., & Vaia, R. A. (2004). Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials, 3(2), 115-120. doi:10.1038/nmat1059Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter, M., Rowan, S. J., Tyler, D. J., & Weder, C. (2007). A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12), 765-769. doi:10.1038/nnano.2007.379Dong, X. M., Kimura, T., Revol, J.-F., & Gray, D. G. (1996). Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites. Langmuir, 12(8), 2076-2082. doi:10.1021/la950133bBraun, B., & Dorgan, J. R. (2009). Single-Step Method for the Isolation and Surface Functionalization of Cellulosic Nanowhiskers. Biomacromolecules, 10(2), 334-341. doi:10.1021/bm8011117Camarero Espinosa, S., Kuhnt, T., Foster, E. J., & Weder, C. (2013). Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules, 14(4), 1223-1230. doi:10.1021/bm400219uLe Cam, E., Frechon, D., Barray, M., Fourcade, A., & Delain, E. (1994). Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes. Proceedings of the National Academy of Sciences, 91(25), 11816-11820. doi:10.1073/pnas.91.25.11816Behl, M., & Lendlein, A. (2007). Shape-memory polymers. Materials Today, 10(4), 20-28. doi:10.1016/s1369-7021(07)70047-0Wagermaier, W., Kratz, K., Heuchel, M., & Lendlein, A. (2009). Characterization Methods for Shape-Memory Polymers. Advances in Polymer Science, 97-145. doi:10.1007/12_2009_25Ratna, D., & Karger-Kocsis, J. (2007). Recent advances in shape memory polymers and composites: a review. Journal of Materials Science, 43(1), 254-269. doi:10.1007/s10853-007-2176-7Yakacki, C. M., & Gall, K. (2009). Shape-Memory Polymers for Biomedical Applications. Advances in Polymer Science, 147-175. doi:10.1007/12_2009_23Maliger, R., Halley, P. J., & Cooper-White, J. J. (2012). Poly(glycerol-sebacate) bioelastomers-kinetics of step-growth reactions using Fourier Transform (FT)-Raman spectroscopy. Journal of Applied Polymer Science, 127(5), 3980-3986. doi:10.1002/app.37719Chen, Q. (2012). Poly(Polyol Sebacate)-Based Elastomeric Nanobiomaterials for Soft Tissue Engineering. Biomedical Materials and Diagnostic Devices, 529-560. doi:10.1002/9781118523025.ch17Filpponen, I., & Argyropoulos, D. S. (2008). Determination of Cellulose Reactivity by Using Phosphitylation and Quantitative31P NMR Spectroscopy. Industrial & Engineering Chemistry Research, 47(22), 8906-8910. doi:10.1021/ie800936xPatel, A., Gaharwar, A. K., Iviglia, G., Zhang, H., Mukundan, S., Mihaila, S. M., … Khademhosseini, A. (2013). Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials, 34(16), 3970-3983. doi:10.1016/j.biomaterials.2013.01.045Pei, A., Malho, J.-M., Ruokolainen, J., Zhou, Q., & Berglund, L. A. (2011). Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules, 44(11), 4422-4427. doi:10.1021/ma200318kTien, Y. I., & Wei, K. H. (2001). High-Tensile-Property Layered Silicates/Polyurethane Nanocomposites by Using Reactive Silicates as Pseudo Chain Extenders. Macromolecules, 34(26), 9045-9052. doi:10.1021/ma010551pHood, M. A., Gold, C. S., Beyer, F. L., Sands, J. M., & Li, C. Y. (2013). Extraordinarily high plastic deformation in polyurethane/silica nanoparticle nanocomposites with low filler concentrations. Polymer, 54(24), 6510-6515. doi:10.1016/j.polymer.2013.10.010Shanmuganathan, K., Capadona, J. R., Rowan, S. J., & Weder, C. (2010). Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J. Mater. Chem., 20(1), 180-186. doi:10.1039/b916130aAbdullah, S. A., Jumahat, A., Abdullah, N. R., & Frormann, L. (2012). Determination of Shape Fixity and Shape Recovery Rate of Carbon Nanotube-filled Shape Memory Polymer Nanocomposites. Procedia Engineering, 41, 1641-1646. doi:10.1016/j.proeng.2012.07.362Nelson, B. A., King, W. P., & Gall, K. (2005). Shape recovery of nanoscale imprints in a thermoset «shape memory» polymer. Applied Physics Letters, 86(10), 103108. doi:10.1063/1.1868883Meng, Q., Hu, J., & Zhu, Y. (2007). Shape-memory polyurethane/multiwalled carbon nanotube fibers. Journal of Applied Polymer Science, 106(2), 837-848. doi:10.1002/app.2651

    Evaluación de competencias transversales en asignaturas relacionadas con Ingeniería Mecánica y de Materiales: Análisis y Resolución de Problemas, Aplicación y Pensamiento Práctico

    Full text link
    [EN] Although the competence based curricula approach has been used in the development of the new programmes for Master and Bachelor degrees within the European Higher Education Area in recent years, the assessment of generic competences is still a pending task. This work presents a methodological proposal for the assessment of the competences of capacity for problem-solving and capacity for applying knowledge in practice, in subjects related to mechanical and materials engineering. In particular, this paper proposes a scale in order to quantify the level of achievement of each competence, and shows some assessment tools developed for this purpose. These tools are based on Checklists to evaluate the learning outcomes of each competence, that can be observed as evidences obtained from the assessment activities proposed during the course. These assessment activities are refered to the resolution of problems, individually and in groups. The learning outcomes, levels of achievement and the Checklist of each competence are presented. Some preliminary results from a first attempt to use this methodology in two subjects of Bachelor and Master degrees, are also described here. Finally, conclusions about preliminary results and the difficulties found in the development of these tools and its aplication are also presented.[ES] A pesar de que las competencias que se trabajan en los nuevos títulos de Grado y Máster figuran explícitamente en sus planes de estudios a partir de los cambios introducidos por el Espacio Europeo de Educación Superior, su evaluación sigue siendo una tarea pendiente a día de hoy. Este trabajo presenta una propuesta metodológica para la evaluación de las competencias de Análisis y Resolución de Problemas y de Aplicación y Pensamiento Práctico, en asignaturas relacionadas con la Ingeniería Mecánica y de Materiales. En particular, este trabajo propone una escala de valoración para cuantificar el nivel de logro de cada competencia, y muestra herramientas de evaluación desarrolladas para este propósito. Dichas herramientas están basadas en Listas de Control que evalúan resultados de aprendizaje de cada competencia, observados mediante las evidencias derivadas de la actividad de evaluación propuesta durante el curso, consistente en la resolución de problemas de forma autónoma y en grupo. Se detallan las escalas de desarrollo de cada competencia, sus resultados de aprendizaje y los ítems de cada Lista de Control. Se analizan algunos resultados preliminares derivados de un primer intento de uso de la metodología propuesta, en dos asignaturas de Grado y Máster. Finalmente se presentan conclusiones sobre los resultados preliminares, junto con las dificultades encontradas tanto en la elaboración de las herramientas de evaluación como en su implementación.Los autores quieren agradecer la ayuda económica y el apoyo institucional recibidos de la Universitat Politècnica de València a través del proyecto PIME/2014/A/012/B.Martínez Casas, J.; Sahuquillo Navarro, O.; Sonseca Olalla, A.; Carballeira, J.; Denia Guzmán, FD.; Suñer Martinez, JL.; Vila Tortosa, MP. (2015). Evaluación de competencias transversales en asignaturas relacionadas con Ingeniería Mecánica y de Materiales: Análisis y Resolución de Problemas, Aplicación y Pensamiento Práctico. En In-Red 2015 - CONGRESO NACIONAL DE INNOVACIÓN EDUCATIVA Y DE DOCENCIA EN RED. Editorial Universitat Politècnica de València. https://doi.org/10.4995/INRED2015.2015.1630OC

    Propuesta de evaluación de las competencias de comunicación oral y escrita en asignaturas de Ingeniería Mecánica y Ciencia de Materiales

    Full text link
    [ES] La acreditación internacional de los másteres y grados ofertados por la universidad y la actual exigencia de los contratantes, han llevado a la necesidad de especificar en los planes de estudio, qué se ha estudiado (contenido) y las competencias adquiridas. En los últimos años el enfoque basado en competencias del Espacio Europeo de Educación Superior se ha utilizado en el desarrollo de los nuevos planes de estudios, la evaluación de estas competencias es todavía una tarea pendiente. En este trabajo se presenta una propuesta para la evaluación de la competencia de comunicación, tanto oral como escrita, en asignaturas de Ingeniería Mecánica y Ciencia de Materiales. La evaluación de las competencias en los resultados de aprendizaje se realizó a partir del desarrollo de rúbricas con el objetivo de cuantificar el nivel de consecución. Las rúbricas han permitido observar variaciones en el nivel de la competencia entre alumnos de Máster y de Grado, además de una buena correlación entre las valoraciones de los profesores evaluadores de un mismo acto de evaluación. Se completarán los resultados con una encuesta planteada a los alumnos donde se pretende recoger su valoración sobre la dinámica planteada.Los autores agradencen la financiación recibida de la Universitat Politècnica de València a través del proyecto PIME/2014/A/012/B.Sahuquillo Navarro, O.; Sonseca Olalla, A.; Martínez Casas, J.; Carballeira, J.; Denia Guzmán, FD.; Ródenas García, JJ.; Marco Alacid, O. (2015). Propuesta de evaluación de las competencias de comunicación oral y escrita en asignaturas de Ingeniería Mecánica y Ciencia de Materiales. En In-Red 2015 - CONGRESO NACIONAL DE INNOVACIÓN EDUCATIVA Y DE DOCENCIA EN RED. Editorial Universitat Politècnica de València. https://doi.org/10.4995/INRED2015.2015.1627OC

    Desarrollo de estrategias de evaluación de competencias transversales en asignaturas de ingeniería mecánica y de materiales

    Full text link
    [EN] The international accreditation for the Master and Bachelor degrees offered at our university, together with the demands of the employers, have made it clear that students’ curricula should specify not only what they have studied, but also what they are actually able to do. This work presents the results obtained within the frame of an innovative project (UPV – PIME program) on the evaluation of three generic competences that have been traditionally worked in subjects of mechanical and materials engineering: capacity for problem solving; capacity for applying knowledge in practice; and communication skills (both oral and written). Different tools for the assessment of these competences have developed with two main objectives: first, to quantify the level of achievement of the students in order to give a numerical evaluation; and second, to be used by the students as a learning material so that they can improve their capacities. These tools are based on the observation of some learning outcomes associated to these competences. Some evaluation activities have been proposed within the different subjects that allow to assess not only the specific scientific-technical competences, but also some of the generic ones.[ES] La acreditación internacional de los títulos de Grado y Máster en nuestra universidad, junto con las demandas de los empleadores, han puesto en evidencia que los planes de estudio deben especificar no sólo lo que se ha estudiado, sino también lo que se es capaz de hacer realmente. Este trabajo presenta los resultados obtenidos en el marco de un proyecto de innovación docente (programa PIME) sobre la evaluación de tres competencias transversales que se han trabajado tradicionalmente en asignaturas de ingeniería mecánica y materiales: la capacidad para la resolución de problemas; la capacidad para aplicar los conocimientos a la práctica; y habilidades de comunicación (oral y escrita). Se han desarrollado diferentes herramientas para la evaluación de estas competencias con dos objetivos principales: en primer lugar, para cuantificar el nivel de logro de los estudiantes con el fin de dar una evaluación numérica; y en segundo, como material de aprendizaje para que los estudiantes puedan mejorar sus capacidades. Estas herramientas se basan en la observación de algunos resultados de aprendizaje asociados a estas competencias. Se han propuesto algunas actividades de evaluación en las diferentes asignaturas que permiten evaluar no sólo las competencias científico-técnicas específicas, sino también algunas de las transversales.Por último, los autores quieren agradecer la ayuda económica y el apoyo institucional recibidos de la Universitat Politècnica de València a través del proyecto PIME/2014/A/012/B.Carballeira, J.; Martínez Casas, J.; Sahuquillo Navarro, O.; Sonseca Olalla, A.; Denia Guzmán, FD.; Suñer Martinez, JL.; Vila Tortosa, MP.... (2015). Desarrollo de estrategias de evaluación de competencias transversales en asignaturas de ingeniería mecánica y de materiales. En In-Red 2015 - CONGRESO NACIONAL DE INNOVACIÓN EDUCATIVA Y DE DOCENCIA EN RED. Editorial Universitat Politècnica de València. https://doi.org/10.4995/INRED2015.2015.1542OC
    corecore