Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin

Abstract

[EN] Efforts to fabricate low-power up converting solid-state systems have rapidly increased in the past decade because of their possible application in several fields such as bio-imaging, drug delivery, solar harvesting or displays. The synthesis of upconverting cross-linked polyester rubbers with covalently tethered chromophores is presented here. Cross-linked films were prepared by reacting a poly(mannitol- sebacate) pre-polymer with 9,10-bis(4-hydroxymethylphenyl) anthracene (DPA-(CH2OH)2) and palladium mesoporphyrin IX. These chromophores served as emitters and sensitizers, respectively, and through a cascade of photophysical events, resulted in an anti-Stokes shifted emission. Indeed, blue emission (*440 nm) of these solid materials was detected upon excitation at 543 nm with a green laser and the power dependence of integrated unconverted intensity versus excitation was examined. The new materials display upconversion at power densities as low as 32 mW/cm2, and do not display phase de-mixing, which has been identified as an obstacle in rubbery blends comprising untethered chromophores.The authors are thankful for the financial support of the Swiss National Science Foundation (200021_13540/1 and 200020_152968), Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03) and the Adolphe Merkle Foundation. The authors thank Prof. Christoph Weder for his help and support.Lee, S.; Sonseca, A.; Vadrucci, R.; Giménez Torres, E.; Foster, E.; Simon, YC. (2014). Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin. Journal of Inorganic and Organometallic Polymers. 24(5):898-903. https://doi.org/10.1007/s10904-014-0063-7S898903245C. A. Parker, C. G. Hatchard. P. Chem. Soc. London, 386–387 (1962)Y.C. Simon, C. Weder, J. Mater. Chem. 22, 20817–20830 (2012)J.Z. Zhao, S.M. Ji, H.M. Guo, Rsc Adv. 1, 937–950 (2011)C. Reinhard, R. Valiente, H.U. Gudel, J. Phys. Chem. B 106, 10051–10057 (2002)M. Haase, H. Schafer, Angew. Chem. Int. Edit. 50, 5808–5829 (2011)W.H. Wu, J.Z. Zhao, J.F. Sun, S. Guo, J. Org. Chem. 77, 5305–5312 (2012)T.T. Zhao, X.Q. Shen, L. Li, Z.P. Guan, N.Y. Gao, P.Y. Yuan, S.Q. Yao, Q.H. Xu, G.Q. Xu, Nanoscale 4, 7712–7719 (2012)C. Cepraga, T. Gallavardin, S. Marotte, P.H. Lanoe, J.C. Mulatier, F. Lerouge, S. Parola, M. Lindgren, P.L. Baldeck, J. Marvel, O. Maury, C. Monnereau, A. Favier, C. Andraud, Y. Leverrier, M.T. Charreyre, Polym. Chem. 4, 61–67 (2013)J. Qian, D. Wang, F.H. Cai, Q.Q. Zhan, Y.L. Wang, S.L. He, Biomaterials 33, 4851–4860 (2012)S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, New J. Phys. 10, 013007 (2008)S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Phys. Rev. Lett. 97, 143903 (2006)M. Samoc, A. Samoc, B. Luther-Davies, Opt. Express 11, 1787–1792 (2003)A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Phys. Rev. B 78(195112), 1–5 (2008)A. Monguzzi, R. Tubino, F. Meinardi, Phys. Rev. B 77, 155122-1-4 (2008)T.N. Singh-Rachford, R.R. Islangulov, F.N. Castellano, J. Phys. Chem. A 112, 3906–3910 (2008)C. Wohnhaas, A. Turshatov, V. Mailander, S. Lorenz, S. Baluschev, T. Miteva, K. Landfester, Macromol. Biosci. 11, 772–778 (2011)R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, J. Am. Chem. Soc. 129, 12652–12653 (2007)Y.C. Simon, C. Weder, Chimia 66, 878 (2012)Y.C. Simon, S. Bai, M.K. Sing, H. Dietsch, M. Achermann, C. Weder, Macromol. Rapid Commun. 33, 498–502 (2012)S.H. Lee, J.R. Lott, Y.C. Simon, C. Weder, J. Mater. Chem. C 1, 5142–5148 (2013)S. Baluschev, P.E. Keivanidis, G. Wegner, J. Jacob, A.C. Grimsdale, K. Mullen, T. Miteva, A. Yasuda, G. Nelles, Appl. Phys. Lett. 86, 1–3 (2005)S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Mullen, G. Wegner, ChemPhysChem 6, 1250–1253 (2005)P.C. Boutin, K.P. Ghiggino, T.L. Kelly, R.P. Steer, J. Phys. Chem. Lett. 4, 4113–4118 (2013)C.A. Sundback, J.Y. Shyu, Y.D. Wang, W.C. Faquin, R.S. Langer, J.P. Vacanti, T.A. Hadlock, Biomaterials 26, 5454–5464 (2005)Z.J. Sun, C. Chen, M.Z. Sun, C.H. Ai, X.L. Lu, Y.F. Zheng, B.F. Yang, D.L. Dong, Biomaterials 30, 5209–5214 (2009)A. Mahdavi, L. Ferreira, C. Sundback, J.W. Nichol, E.P. Chan, D.J.D. Carter, C.J. Bettinger, S. Patanavanich, L. Chignozha, E. Ben-Joseph, A. Galakatos, H. Pryor, I. Pomerantseva, P.T. Masiakos, W. Faquin, A. Zumbuehl, S. Hong, J. Borenstein, J. Vacanti, R. Langer, J.M. Karp, Proc. Natl. Acad. Sci. USA 105, 2307–2312 (2008)A. Sonseca, S. Camarero-Espinosa, L. Peponi, C. Weder, E.J. Foster, J.M. Kenny, E. Giménez, J. Polym. Sci. Part A. (2014). doi: 10.1002/pola.27367R. Vadrucci, C. Weder, Y.C. Simon, J. Mater. Chem. C 2, 2837–2841 (2014)F.A. Lara, U. Lins, G.H. Bechara, P.L. Oliveira, J. Exp. Biol. 208, 3093–3101 (2005)R. Maliger, P.J. Halley, J.J. Cooper-White, J. Appl. Polym. Sci. 127, 3980–3986 (2013)S. H. Lee, M. A. Ayer, R. Vadrucci, C. Weder, Y. C. Simon, Polym. Chem. (2014)T.W. Schmidt, Y.Y. Cheng, B. Fuckel, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, J. Phys. Chem. Lett. 1, 1795–1799 (2010)R. R. Islangulov, T. N. Singh, J. Lott, C. Weder, F. N. Castellano. Abstr. Pap. Am. Chem. Soc. 235 (2008

    Similar works