122 research outputs found

    Optical kerr effect in supercooled water

    Get PDF
    We present molecular dynamics simulations of the optical Kerr effect in liquid and supercooled water and compare with recent time-resolved Kerr spectroscopy measurements [R. Torre , Nature (London) 428, 296 (2004)]. The short time features of the Kerr response, characterized by peaks near 15, 60, and 160 fs, are weakly temperature dependent. The long-time decay is well described by a stretched exponential with a nearly constant stretch parameter and relaxation times that follow a power law similar to(T-T-S)(-gamma), with T-S=198.3 K and gamma=2.35. Our findings are discussed in the light of the spectroscopy data and previous simulation analyzes of the structural relaxation in supercooled water.941

    Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions

    Get PDF
    Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells

    Diversity and selective sweep in the OsAMT1;1 genomic region of rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ammonium is one of the major forms in which nitrogen is available for plant growth. <it>OsAMT1;1 </it>is a high-affinity ammonium transporter in rice (<it>Oryza sativa </it>L.), responsible for ammonium uptake at low nitrogen concentration. The expression pattern of the gene has been reported. However, variations in its nucleotides and the evolutionary pathway of its descent from wild progenitors are yet to be elucidated. In this study, nucleotide diversity of the gene <it>OsAMT1;1 </it>and the diversity pattern of seven gene fragments spanning a genomic region approximately 150 kb long surrounding the gene were surveyed by sequencing a panel of 216 rice accessions including both cultivated rice and wild relatives.</p> <p>Results</p> <p>Nucleotide polymorphism (Pi) of <it>OsAMT1;1 </it>was as low as 0.00004 in cultivated rice (<it>Oryza sativa</it>), only 2.3% of that in the common wild rice (<it>O. rufipogon</it>). A single dominant haplotype was fixed at the locus in <it>O. sativa</it>. The test values for neutrality were significantly negative in the entire region stretching 5' upstream and 3' downstream of the gene in all accessions. The value of linkage disequilibrium remained high across a 100 kb genomic region around <it>OsAMT1;1 </it>in <it>O. sativa</it>, but fell rapidly in <it>O. rufipogon </it>on either side of the promoter of <it>OsAMT1;1</it>, demonstrating a strong natural selection within or nearby the ammonium transporter.</p> <p>Conclusions</p> <p>The severe reduction in nucleotide variation at <it>OsAMT1;1 </it>in rice was caused by a selective sweep around <it>OsAMT1;1</it>, which may reflect the nitrogen uptake system under strong selection by the paddy soil during the domestication of rice. Purifying selection also occurred before the wild rice diverged into its two subspecies, namely <it>indica </it>and <it>japonica</it>. These findings would provide useful insights into the processes of evolution and domestication of nitrogen uptake genes in rice.</p

    Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma

    Get PDF
    BACKGROUND: We previously identified brain type fatty acid-binding protein (FABP7) as a prognostic marker for patients with glioblastoma (GBM). Increased expression of FABP7 is associated with reduced survival. To investigate possible molecular mechanisms underlying this association, we compared the expression and subcellular localization of FABP7 in non-tumor brain tissues with different types of glioma, and examined the expression of FABP7 and epidermal growth factor receptor (EGFR) in GBM tumors. METHODS: Expression of FABP7 in non-tumor brain and glioma specimens was examined using immunohistochemistry, and its correlation to the clinical behavior of the tumors was analyzed. We also analyzed the association between FABP7 and EGFR expression in different sets of GBM specimens using published DNA microarray datasets and semi-quantitative immunohistochemistry. In vitro migration was examined using SF763 glioma cell line. RESULTS: FABP7 was present in a unique population of glia in normal human brain, and its expression was increased in a subset of reactive astrocytes. FABP7 immunoreactivity in grade I pilocytic astrocytoma was predominantly cytoplasmic, whereas nuclear FABP7 was detected in other types of infiltrative glioma. Nuclear, not cytoplasmic, FABP7 immunoreactivity was associated with EGFR overexpression in GBM (N = 61, p = 0.008). Expression of the FABP7 gene in GBM also correlated with the abundance of EGFR mRNA in our previous microarray analyses (N = 34, p = 0.016) and an independent public microarray dataset (N = 28, p = 0.03). Compared to those negative for both markers, nuclear FABP7-positive/EGFR-positive and nuclear FABP7-positive/EGFR-negative GBM tumors demonstrated shortest survival, whereas those only positive for EGFR had intermediate survival. EGFR activation increased nuclear FABP7 immunoreactivity in a glioma cell line in vitro, and inhibition of FABP7 expression suppressed EGF-induced glioma-cell migration. Our data suggested that in EGFR-positive GBM the presence of nuclear FABP7 immunoreactivity increases the risk of poor prognosis CONCLUSION: In this study, we identified a possible mechanism as the basis of the association between nuclear FABP7 and poor prognosis of GBM. FABP7 expression can be found in all grades of astrocytoma, but neoplastic cells with nuclear FABP7 were only seen in infiltrative types of tumors. Nuclear FABP7 may be induced by EGFR activation to promote migration of GBM tumor cells. Positive nuclear FABP7 and EGFR overexpression correlated with short survival in EGFR-positive GBM patients. Therefore, nuclear FABP7 immunoreactivity could be used to monitor the progression of EGFR-overexpressed GBM

    Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems

    Get PDF
    This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes

    Loss of heterozygosity of TRIM3 in malignant gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant gliomas are frequent primary brain tumors associated with poor prognosis and very limited response to conventional chemo- and radio-therapies. Besides sharing common growth features with other types of solid tumors, gliomas are highly invasive into adjacent brain tissue, which renders them particularly aggressive and their surgical resection inefficient. Therefore, insights into glioma formation are of fundamental interest in order to provide novel molecular targets for diagnostic purposes and potential anti-cancer drugs. Human <it>Tripartite motif protein 3 </it>(<it>TRIM3</it>) encodes a structural homolog of <it>Drosophila brain tumor </it>(<it>brat</it>) implicated in progenitor cell proliferation control and cancer stem cell suppression. <it>TRIM3 </it>is located within the loss of allelic heterozygosity (LOH) hotspot of chromosome segment 11p15.5, indicating a potential role in tumor suppression. ...</p> <p>Methods</p> <p>Here we analyze 70 primary human gliomas of all types and grades and report somatic deletion mapping as well as single nucleotide polymorphism analysis together with quantitative real-time PCR of chromosome segment 11p15.5.</p> <p>Results</p> <p>Our analysis identifies LOH in 17 cases (24%) of primary human glioma which defines a common 130 kb-wide interval within the <it>TRIM3 </it>locus as a minimal area of loss. We further detect altered genomic dosage of <it>TRIM3 </it>in two glioma cases with LOH at 11p15.5, indicating homozygous deletions of <it>TRIM3</it>.</p> <p>Conclusion</p> <p>Loss of heterozygosity of chromosome segment 11p15.5 in malignant gliomas suggests <it>TRIM3 </it>as a candidate brain tumor suppressor gene.</p

    Mre11-Rad50 Promotes Rapid Repair of DNA Damage in the Polyploid Archaeon Haloferax volcanii by Restraining Homologous Recombination

    Get PDF
    Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species

    Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence

    Get PDF
    To assess the capability of perfusion MRI to differentiate between necrosis and tumor recurrence in patients showing radiological progression of cerebral metastases treated with stereotactic radiosurgery (SRS). From 2004 to 2006 dynamic susceptibility-weighted contrast-enhanced perfusion MRI scans were performed on patients with cerebral metastasis showing radiological progression after SRS during follow-up. Several perfusion MRI characteristics were examined: a subjective visual score of the relative cerebral blood volume (rCBV) map and quantitative rCBV measurements of the contrast-enhanced areas of maximal perfusion. For a total of 34 lesions in 31 patients a perfusion MRI was performed. Diagnoses were based on histology, definite radiological decrease or a combination of radiological and clinical follow-up. The diagnosis of tumor recurrence was obtained in 20 of 34 lesions, and tumor necrosis in 14 of 34. Regression analyses for all measures proved statistically significant (χ2 = 11.6–21.6, P < 0.001–0.0001). Visual inspection of the rCBV map yielded a sensitivity and specificity of 70.0 respectively 92.9%. The optimal cutoff point for maximal tumor rCBV relative to white matter was 2.00 (improving the sensibility to 85.0%) and 1.85 relative to grey matter (GM), improving the specificity to 100%, with a corresponding sensitivity of 70.0%. Perfusion MRI seems to be a useful tool in the differentiation of necrosis and tumor recurrence after SRS. For the patients displaying a rCBV-GM greater than 1.85, the diagnosis of necrosis was excluded. Salvage treatment can be initiated for these patients in an attempt to prolong survival

    Chiasmata Promote Monopolar Attachment of Sister Chromatids and Their Co-Segregation toward the Proper Pole during Meiosis I

    Get PDF
    The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I
    corecore