208 research outputs found
Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method
We study the two-scale asymptotics for a charged beam under the action of a
rapidly oscillating external electric field. After proving the convergence to
the correct asymptotic state, we develop a numerical method for solving the
limit model involving two time scales and validate its efficiency for the
simulation of long time beam evolution
An adaptive numerical method for the Vlasov equation based on a multiresolution analysis.
International audienceIn this paper, we present very first results for the adaptive solution on a grid of the phase space of the Vlasov equation arising in particles accelarator and plasma physics. The numerical algorithm is based on a semi-Lagrangian method while adaptivity is obtained using multiresolution analysis
ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry
This paper presents the current state of the global gyrokinetic code ORB5 as
an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177
409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of
equations using a PIC scheme and also includes collisions and strong flows. The
code assumes multiple gyrokinetic ion species at all wavelengths for the
polarization density and drift-kinetic electrons. Variants of the physical
model can be selected for electrons such as assuming an adiabatic response or a
``hybrid'' model in which passing electrons are assumed adiabatic and trapped
electrons are drift-kinetic. A Fourier filter as well as various control
variates and noise reduction techniques enable simulations with good
signal-to-noise ratios at a limited numerical cost. They are completed with
different momentum and zonal flow-conserving heat sources allowing for
temperature-gradient and flux-driven simulations. The code, which runs on both
CPUs and GPUs, is well benchmarked against other similar codes and analytical
predictions, and shows good scalability up to thousands of nodes
Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model
The influence of the finite number N of particles coupled to a monochromatic
wave in a collisionless plasma is investigated. For growth as well as damping
of the wave, discrete particle numerical simulations show an N-dependent long
time behavior resulting from the dynamics of individual particles. This
behavior differs from the one due to the numerical errors incurred by Vlasov
approaches. Trapping oscillations are crucial to long time dynamics, as the
wave oscillations are controlled by the particle distribution inhomogeneities
and the pulsating separatrix crossings drive the relaxation towards thermal
equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
- …