16 research outputs found

    Links between environment, diet, and the hunter-gatherer microbiome

    Get PDF
    The study of traditional populations provides a view of human-associated microbes unperturbed by industrialization, as well as a window into the microbiota that co-evolved with humans. Here we discuss our recent work characterizing the microbiota from the Hadza hunter-gatherers of Tanzania. We found seasonal shifts in bacterial taxa, diversity, and carbohydrate utilization by the microbiota. When compared to the microbiota composition from other populations around the world, the Hadza microbiota shares bacterial families with other traditional societies that are rare or absent from microbiotas of industrialized nations. We present additional observations from the Hadza microbiota and their lifestyle and environment, including microbes detected on hands, water, and animal sources, how the microbiota varies with sex and age, and the short-term effects of introducing agricultural products into the diet. In the context of our previously published findings and of these additional observations, we discuss a path forward for future work

    Hadza Prevotella require diet-derived microbiota-accessible carbohydrates to persist in mice

    No full text
    Summary: Industrialization has transformed the gut microbiota, reducing the prevalence of Prevotella relative to Bacteroides. Here, we isolate Bacteroides and Prevotella strains from the microbiota of Hadza hunter-gatherers in Tanzania, a population with high levels of Prevotella. We demonstrate that plant-derived microbiota-accessible carbohydrates (MACs) are required for persistence of Prevotella copri but not Bacteroides thetaiotaomicron in vivo. Differences in carbohydrate metabolism gene content, expression, and in vitro growth reveal that Hadza Prevotella strains specialize in degrading plant carbohydrates, while Hadza Bacteroides isolates use both plant and host-derived carbohydrates, a difference mirrored in Bacteroides from non-Hadza populations. When competing directly, P. copri requires plant-derived MACs to maintain colonization in the presence of B. thetaiotaomicron, as a no-MAC diet eliminates P. copri colonization. Prevotella’s reliance on plant-derived MACs and Bacteroides’ ability to use host mucus carbohydrates could explain the reduced prevalence of Prevotella in populations consuming a low-MAC, industrialized diet

    Randomized controlled trial demonstrates response to a probiotic intervention for metabolic syndrome that may correspond to diet

    No full text
    ABSTRACTAn individual’s immune and metabolic status is coupled to their microbiome. Probiotics offer a promising, safe route to influence host health, possibly via the microbiome. Here, we report an 18-week, randomized prospective study that explores the effects of a probiotic vs. placebo supplement on 39 adults with elevated parameters of metabolic syndrome. We performed longitudinal sampling of stool and blood to profile the human microbiome and immune system. While we did not see changes in metabolic syndrome markers in response to the probiotic across the entire cohort, there were significant improvements in triglycerides and diastolic blood pressure in a subset of probiotic arm participants. Conversely, the non-responders had increased blood glucose and insulin levels over time. The responders had a distinct microbiome profile at the end of the intervention relative to the non-responders and placebo arm. Importantly, diet was a key differentiating factor between responders and non-responders. Our results show participant-specific effects of a probiotic supplement on improving parameters of metabolic syndrome and suggest that dietary factors may enhance stability and efficacy of the supplement

    Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains

    No full text
    Dietary polysaccharides play a dominant role in shaping the composition and functionality of our gut microbiota. Dietary interventions using these microbiota-accessible carbohydrates (MACs) serve as a promising tool for manipulating the gut microbial community. However, our current gap in knowledge regarding microbial metabolic pathways that are involved in the degradation of these MACs has made the design of rational interventions difficult. The issue is further complicated by the diversity of pathways observed for the utilization of similar MACs, even in closely related microbial strains. Our current work focuses on divergent fructan utilization pathways in two closely related B. thetaiotaomicron strains and provides an integrated approach to characterize the molecular basis for strain-level functional differences.Genomic differences between gut-resident bacterial strains likely underlie significant interindividual variation in microbiome function. Traditional methods of determining community composition, such as 16S rRNA gene amplicon sequencing, fail to capture this functional diversity. Metagenomic approaches are a significant step forward in identifying strain-level sequence variants; however, given the current paucity of biochemical information, they too are limited to mainly low-resolution and incomplete functional predictions. Using genomic, biochemical, and molecular approaches, we identified differences in the fructan utilization profiles of two closely related Bacteroides thetaiotaomicron strains. B. thetaiotaomicron 8736 (Bt-8736) contains a fructan polysaccharide utilization locus (PUL) with a divergent susC/susD homolog gene pair that enables it to utilize inulin, differentiating this strain from other characterized Bt strains. Transfer of the distinct pair of susC/susD genes from Bt-8736 into the noninulin using type strain B. thetaiotaomicron VPI-5482 resulted in inulin use by the recipient strain, Bt(8736-2). The presence of the divergent susC/susD gene pair alone enabled the hybrid Bt(8736-2) strain to outcompete the wild-type strain in vivo in mice fed an inulin diet. Further, we discovered that the susC/susD homolog gene pair facilitated import of inulin into the periplasm without surface predigestion by an endo-acting enzyme, possibly due to the short average chain length of inulin compared to many other polysaccharides. Our data builds upon recent reports of dietary polysaccharide utilization mechanisms found in members of the Bacteroides genus and demonstrates how the acquisition of two genes can alter the functionality and success of a strain within the gut

    Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania

    No full text
    Although humans have cospeciated with their gut-resident microbes, it is difficult to infer features of our ancestral microbiome. Here, we examine the microbiome profile of 350 stool samples collected longitudinally for more than a year from the Hadza hunter-gatherers of Tanzania. The data reveal annual cyclic reconfiguration of the microbiome, in which some taxa become undetectable only to reappear in a subsequent season. Comparison of the Hadza data set with data collected from 18 populations in 16 countries with varying lifestyles reveals that gut community membership corresponds to modernization: Notably, the taxa within the Hadza that are the most seasonally volatile similarly differentiate industrialized and traditional populations. These data indicate that some dynamic lineages of microbes have decreased in prevalence and abundance in modernized populations
    corecore