3 research outputs found

    Macrocyclic tetramers—structural investigation of peptide-peptoid hybrids

    Get PDF
    Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class

    Macrocyclic Tetramers—Structural Investigation of Peptide-Peptoid Hybrids

    Get PDF
    Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class

    Polychromatic Excitation of Delocalized Long-Lived Proton Spin States in Aliphatic Chains

    Full text link
    Long-lived states (LLS) involving pairs of magnetically inequivalent but chemically equivalent proton spins in aliphatic (CH2_2)n_n chains can be excited by simultaneous application of weak selective radio-frequency (RF) fields at n chemical shifts by polychromatic spin lock induced crossing (poly-SLIC). The LLS are delocalized throughout the aliphatic chain by mixing of intrapair singlet states and by excitation of LLS comprising products of four or six spins. The measured lifetimes TLLS_{LLS} in a model compound are about 5 times longer than T1, and are strongly affected by interactions with macromolecules
    corecore