53 research outputs found

    Systematic Review: Syndromes, Early Diagnosis, and Treatment in Autoimmune Encephalitis

    Get PDF
    In recent years, new antibodies have been discovered which mediate autoimmune encephalitis. This immunological response can be triggered by an infection or a tumor. Classical onconeuronal antibodies are directed against intracellular neuronal agents but recently, a novel group of antibodies to neuronal cell-surface and synaptic antigens associated with different CNS-syndromes, has been discovered. Interestingly, the syndromes in this group can be successfully treated with immunotherapy and frequently do not have underlying tumors. The aim of this review is to describe the current state of knowledge about autoimmune encephalitis, in order to provide clinicians with a concise, up-to-date overview. Thus, a comprehensive literature search was performed in medical databases. The literature was carefully studied and new findings focusing on the symptoms, diagnosis and treatment were summarized and interpreted. Even though it might be challenging in some cases, the awareness of certain symptom constellations and demographic information, in combination with laboratory- and MRI-results, allows clinicians to make the diagnosis of probable autoimmune encephalitis at an early stage. Treatment can therefore be initiated faster, which significantly improves the outcome. Further investigations could define the underlying pathogenic mechanisms. Randomized controlled trials, paired with increasing clinical experience, will be necessary to improve the identification of affected patients, treatment strategies, and outcomes in the years to come

    Four and a half LIM protein 1C (FHL1C)

    Get PDF
    Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G(0)/G(1) phase. Furthermore, low expression of K(v1.5), a voltage-gated potassium channel known to alter myoblast proliferation during the G(1) phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between K(v1.5) and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and K(v1.5) within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of K(v1.5) with FHL1C in Xenopus laevis oocytes markedly reduced K(+) currents when compared to oocytes expressing K(v1.5) only. We here present the first evidence on a biological relevance of FHL1C

    Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats

    Get PDF
    BACKGROUND: Neuromyelitis optica (NMO) is a severe, disabling disease of the central nervous system (CNS) characterized by the formation of astrocyte-destructive, neutrophil-dominated inflammatory lesions in the spinal cord and optic nerves. These lesions are initiated by the binding of pathogenic aquaporin 4 (AQP4)-specific autoantibodies to astrocytes and subsequent complement-mediated lysis of these cells. Typically, these lesions form in a setting of CNS inflammation, where the blood–brain barrier is open for the entry of antibodies and complement. However, it remained unclear to which extent pro-inflammatory cytokines and chemokines contribute to the formation of NMO lesions. To specifically address this question, we injected the cytokines interleukin-1 beta, tumor necrosis factor alpha, interleukin-6, interferon gamma and the chemokine CXCL2 into the striatum of NMO-IgG seropositive rats and analyzed the tissue 24 hours later by immunohistochemistry. RESULTS: All injected cytokines and chemokines led to profound leakage of immunoglobulins into the injected hemisphere, but only interleukin-1 beta induced the formation of perivascular, neutrophil-infiltrated lesions with AQP4 loss and complement-mediated astrocyte destruction distant from the needle tract. Treatment of rat brain endothelial cells with interleukin-1 beta, but not with any other cytokine or chemokine applied at the same concentration and over the same period of time, caused profound upregulation of granulocyte-recruiting and supporting molecules. Injection of interleukin-1 beta caused higher numbers of blood vessels with perivascular, cellular C1q reactivity than any other cytokine tested. Finally, the screening of a large sample of CNS lesions from NMO and multiple sclerosis patients revealed large numbers of interleukin-1 beta-reactive macrophages/activated microglial cells in active NMO lesions but not in MS lesions with comparable lesion activity and location. CONCLUSIONS: Our data strongly suggest that interleukin-1 beta released in NMO lesions and interleukin-1 beta-induced production/accumulation of complement factors (like C1q) facilitate neutrophil entry and BBB breakdown in the vicinity of NMO lesions, and might thus be an important secondary factor for lesion formation, possibly by paving the ground for rapid lesion growth and amplified immune cell recruitment to this site

    Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke

    Get PDF
    Objectives From previous data in animal models of cerebral ischemia, lipocalin-2 (LCN2), a protein related to neutrophil function and cellular iron homeostasis, is supposed to have a value as a biomarker in ischemic stroke patients. Therefore, we examined LCN2 expression in the ischemic brain in an animal model and measured plasma levels of LCN2 in ischemic stroke patients. Methods In the mouse model of transient middle cerebral artery occlusion (tMCAO), LCN2 expression in the brain was analyzed by immunohistochemistry and correlated to cellular nonheme iron deposition up to 42 days after tMCAO. In human stroke patients, plasma levels of LCN2 were determined one week after ischemic stroke. In addition to established predictive parameters such as age, National Institutes of Health Stroke Scale and thrombolytic therapy, LCN2 was included into linear logistic regression modeling to predict clinical outcome at 90 days after stroke. Results Immunohistochemistry revealed expression of LCN2 in the mouse brain already at one day following tMCAO, and the amount of LCN2 subsequently increased with a maximum at 2 weeks after tMCAO. Accumulation of cellular nonheme iron was detectable one week post tMCAO and continued to increase. In ischemic stroke patients, higher plasma levels of LCN2 were associated with a worse clinical outcome at 90 days and with the occurrence of post-stroke infections. Conclusions LCN2 is expressed in the ischemic brain after temporary experimental ischemia and paralleled by the accumulation of cellular nonheme iron. Plasma levels of LCN2 measured in patients one week after ischemic stroke contribute to the prediction of clinical outcome at 90 days and reflect the systemic response to post-stroke infections

    Four and a Half LIM Protein 1C (FHL1C): A Binding Partner for Voltage-Gated Potassium Channel Kv1.5

    Get PDF
    Four-and-a-half LIM domain protein 1 isoform A (FHL1A) is predominantly expressed in skeletal and cardiac muscle. Mutations in the FHL1 gene are causative for several types of hereditary myopathies including X-linked myopathy with postural muscle atrophy (XMPMA). We here studied myoblasts from XMPMA patients. We found that functional FHL1A protein is completely absent in patient myoblasts. In parallel, expression of FHL1C is either unaffected or increased. Furthermore, a decreased proliferation rate of XMPMA myoblasts compared to controls was observed but an increased number of XMPMA myoblasts was found in the G0/G1 phase. Furthermore, low expression of Kv1.5, a voltage-gated potassium channel known to alter myoblast proliferation during the G1 phase and to control repolarization of action potential, was detected. In order to substantiate a possible relation between Kv1.5 and FHL1C, a pull-down assay was performed. A physical and direct interaction of both proteins was observed in vitro. In addition, confocal microscopy revealed substantial colocalization of FHL1C and Kv1.5 within atrial cells, supporting a possible interaction between both proteins in vivo. Two-electrode voltage clamp experiments demonstrated that coexpression of Kv1.5 with FHL1C in Xenopus laevis oocytes markedly reduced K+ currents when compared to oocytes expressing Kv1.5 only. We here present the first evidence on a biological relevance of FHL1C

    Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat

    Get PDF
    Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children

    The COVID-19 pandemic and neurology: A survey on previous and continued restrictions for clinical practice, curricular training, and health economics

    Get PDF
    Background and Purpose The COVID-19 pandemic has significantly impacted health systems worldwide. Here, we assessed the pandemic's impact on clinical service, curricular training, and financial burden from a neurological viewpoint during the enforced lockdown periods and the assumed recovery by 2023. Methods An online 18-item survey was conducted by the European Academy of Neurology (EAN) NeuroCOVID-19 Task Force among the EAN community. The survey was online between February and March 2023. Questions related to general, demographic, clinical, work, education, and economic aspects. Results We collected 430 responses from 79 countries. Most health care professionals were aged 35–44 years, with >15 years of work experience. The key findings of their observations were as follows. (i) Clinical services were cut back in all neurological subspecialties during the most restrictive COVID-19 lockdown period. The most affected neurological subspecialties were services for patients with dementia, and neuromuscular and movement disorders. The levels of reduction and the pace of recovery were distinct for acute emergencies and in- and outpatient care. Recovery was slow for sleep medicine, autonomic nervous system disorders, neurorehabilitation, and dementia care. (ii) Student and residency rotations and grand rounds were reorganized, and congresses were converted into a virtual format. Conferences are partly maintained in a hybrid format. (iii) Affordability of neurological care and medication shortage are emerging issues. Conclusions Recovery of neurological services up to spring 2023 has been incomplete following substantial disruption of neurological care, medical education, and health economics in the wake of the COVID-19 pandemic. The continued limitations for the delivery of neurological care threaten brain health and call for action on a global scale

    The European Academy of Neurology NeuroCOVID-19 Task Force: A lesson for the future

    Get PDF
    Background:The COVID-19 pandemic has made its mark on world history forever causing millions of deaths, and straining health systems, economies, and societies worldwide. The European Academy of Neurology (EAN) reacted promptly. A special NeuroCOVID-19 Task Force was set up at the beginning of the pandemic to promote knowledge, research, international collaborations, and raise awareness about the prevention and treatment of COVID-19-related neurological issues. Methods Activities carried out during and after the pandemic by the EAN NeuroCOVID-19 Task Force are described. The main aim was to review all these initiatives in detail as an overarching lesson from the past to improve the present and be better prepared in case of future pandemics. Results During the pandemic, the Task Force was engaged in several initiatives: the creation of the EAN NEuro-covid ReGistrY (ENERGY); the launch of several surveys (neurological manifestations of COVID-19 infection; the pandemic's impact on patients with chronic neurological diseases; the pandemic's impact of restrictions for clinical practice, curricular training, and health economics); the publication of position papers regarding the management of patients with neurological diseases during the pandemic, and vaccination hesitancy among people with chronic neurological disorders; and the creation of a dedicated “COVID-19 Breaking News” section in EANpages. Conclusions The EAN NeuroCOVID-19 Task Force was immediately engaged in various activities to participate in the fight against COVID-19. The Task Force's concerted strategy may serve as a foundation for upcoming global neurological emergencies

    Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage

    Get PDF
    AbstractThe association of vitamin D deficiency with higher prevalence, relapse rate and progression of multiple sclerosis (MS) has stimulated great interest in using vitamin D supplementation as a preventative measure and even a therapy for established MS. However, there is a considerable lack of evidence when it comes to an age/developmental stage-dependent efficacy of vitamin D action and a time-window for the most effective prophylactic treatment remains unclear.We studied the effect of vitamin D supplementation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS, at three different developmental stages in rats. Supplementation treatment was initiated: i) prior to gestation and maintained throughout pre- and early postnatal development (gestation and lactation); ii) after weaning, throughout juvenile/adolescence period and iii) in adult age. We observed a marked attenuation of EAE in juvenile/adolescent rats reflected in a less severe CNS inflammation and demyelination, accompanied by a lower amount of IFN-Îł producing MOG-specific T cells. Moreover, the cytokine expression pattern in these rats reflected a more anti-inflammatory phenotype of their peripheral immune response. However, the same supplementation regimen failed to improve the disease outcome both in adult rats and in rats treated during pre- and early post-natal development.Our data demonstrate a developmental stage-dependent efficiency of vitamin D to ameliorate neuroinflammation, suggesting that childhood and adolescence should be the target for the most effective preventive treatment

    Long-term implanted cOFM probe causes minimal tissue reaction in the brain.

    No full text
    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe
    • …
    corecore