260 research outputs found

    Inflammatory Measures in Depressed Patients With and Without a History of Adverse Childhood Experiences

    Get PDF
    Background: Major depressive disorder (MDD) is a complex psychiatric condition with different subtypes and etiologies. Exposure to adverse childhood experiences (ACE) is an important risk factor for the development of MDD later in life. Evidence suggests that pro-inflammatory processes may convey this risk as both MDD and ACE have been related to increased levels of inflammation. In the present study, we aimed to disentangle the effects of MDD and ACE on inflammation levels.Methods: Markers of inflammation (plasma interleukin(IL)-6 and high sensitive C-reactive protein (hsCRP) concentrations, white blood cell (WBC) count and a composite inflammation score (CIS) combining all three) were assessed in 23 MDD patients with ACE, 23 MDD patients without ACE, 21 healthy participants with ACE, and 21 healthy participants without ACE (mean age: 35 ± 11 (SD) years). None of the patients and participants was taking psychotropic medication. ACE was assessed with the Early Trauma Inventory (ETI) and was defined as moderate to severe exposure to sexual or physical abuse.Results: Group differences in the different inflammatory measures were observed. MDD patients with ACE showed significantly higher IL-6 concentrations (p = 0.018), higher WBC counts (p = 0.003) and increased general inflammation levels as indicated by the CIS (p = 0.003) compared to healthy controls. In contrast, MDD patients without ACE displayed similar inflammation levels to the control group (p = 0.93).Conclusion: We observed elevated inflammation in MDD patients with a history of ACE, which could indicate a subtype of “inflammatory depression”. Accordingly, MDD patients with ACE might potentially benefit from anti-inflammatory therapies

    Neonatal White Matter Maturation Is Associated With Infant Language Development

    Get PDF
    Background: While neonates have no sophisticated language skills, the neural basis for acquiring this function is assumed to already be present at birth. Receptive language is measurable by 6 months of age and meaningful speech production by 10-18 months of age. Fiber tracts supporting language processing include the corpus callosum (CC), which plays a key role in the hemispheric lateralization of language; the left arcuate fasciculus (AF), which is associated with syntactic processing; and the right AF, which plays a role in prosody and semantics. We examined if neonatal maturation of these fiber tracts is associated with receptive language development at 12 months of age. Methods: Diffusion-weighted imaging (DWI) was performed in 86 infants at 26.6 ± 12.2 days post-birth. Receptive language was assessed via the MacArthur-Bates Communicative Development Inventory at 12 months of age. Tract-based fractional anisotropy (FA) was determined using the NA-MIC atlas-based fiber analysis toolkit. Associations between neonatal regional FA, adjusted for gestational age at birth and age at scan, and language development at 12 months of age were tested using ANOVA models. Results: After multiple comparisons correction, higher neonatal FA was positively associated with receptive language at 12 months of age within the genu (p < 0.001), rostrum (p < 0.001), and tapetum (p < 0.001) of the CC and the left fronto-parietal AF (p = 0.008). No significant clusters were found in the right AF. Conclusion: Microstructural development of the CC and the AF in the newborn is associated with receptive language at 12 months of age, demonstrating that interindividual variation in white matter microstructure is relevant for later language development, and indicating that the neural foundation for language processing is laid well ahead of the majority of language acquisition. This suggests that some origins of impaired language development may lie in the intrauterine and potentially neonatal period of life. Understanding how interindividual differences in neonatal brain maturity relate to the acquisition of function, particularly during early development when the brain is in an unparalleled window of plasticity, is key to identifying opportunities for harnessing neuroplasticity in health and disease

    How the Selfish Brain Organizes its Supply and Demand

    Get PDF
    During acute mental stress, the energy supply to the human brain increases by 12%. To determine how the brain controls this demand for energy, 40 healthy young men participated in two sessions (stress induced by the Trier Social Stress Test and non-stress intervention). Subjects were randomly assigned to four different experimental groups according to the energy provided during or after stress intervention (rich buffet, meager salad, dextrose-infusion and lactate-infusion). Blood samples were frequently taken and subjects rated their autonomic and neuroglycopenic symptoms by standard questionnaires. We found that stress increased carbohydrate intake from a rich buffet by 34 g (from 149 ± 13 g in the non-stress session to 183 ± 16 g in the stress session; P < 0.05). While these stress-extra carbohydrates increased blood glucose concentrations, they did not increase serum insulin concentrations. The ability to suppress insulin secretion was found to be linked to the sympatho-adrenal stress-response. Social stress increased concentrations of epinephrine 72% (18.3 ± 1.3 vs. 31.5 ± 5.8 pg/ml; P < 0.05), norepinephrine 148% (242.9 ± 22.9 vs. 601.1 ± 76.2 pg/ml; P < 0.01), ACTH 184% (14.0 ± 1.3 vs. 39.8 ± 7.7 pmol/l; P < 0.05), cortisol 131% (5.4 ± 0.5 vs. 12.4 ± 1.3 μg/dl; P < 0.01) and autonomic symptoms 137% (0.7 ± 0.3 vs. 1.7 ± 0.6; P < 0.05). Exogenous energy supply (regardless of its character, i.e., rich buffet or energy infusions) was shown to counteract a neuroglycopenic state that developed during stress. Exogenous energy did not dampen the sympatho-adrenal stress-responses. We conclude that the brain under stressful conditions demands for energy from the body by using a mechanism, which we refer to as “cerebral insulin suppression” and in so doing it can satisfy its excessive needs

    Inflammatory measures in depressed patients with and without a history of adverse childhood experiences

    Get PDF
    Background: Major depressive disorder (MDD) is a complex psychiatric condition with different subtypes and etiologies. Exposure to adverse childhood experiences (ACE) is an important risk factor for the development of MDD later in life. Evidence suggests that pro-inflammatory processes may convey this risk as both MDD and ACE have been related to increased levels of inflammation. In the present study, we aimed to disentangle the effects of MDD and ACE on inflammation levels. Methods: Markers of inflammation (plasma interleukin(IL)-6 and high sensitive C-reactive protein (hsCRP) concentrations, white blood cell (WBC) count and a composite inflammation score (CIS) combining all three) were assessed in 23 MDD patients with ACE, 23 MDD patients without ACE, 21 healthy participants with ACE, and 21 healthy participants without ACE (mean age: 35 +/- 11 (SD) years). None of the patients and participants was taking psychotropic medication. ACE was assessed with the Early Trauma Inventory (ETI) and was defined as moderate to severe exposure to sexual or physical abuse. Results: Group differences in the different inflammatory measures were observed. MDD patients with ACE showed significantly higher IL-6 concentrations (p = 0.018), higher WBC counts (p = 0.003) and increased general inflammation levels as indicated by the CIS (p = 0.003) compared to healthy controls. In contrast, MDD patients without ACE displayed similar inflammation levels to the control group (p = 0.93). Conclusion: We observed elevated inflammation in MDD patients with a history of ACE, which could indicate a subtype of "inflammatory depression". Accordingly, MDD patients with ACE might potentially benefit from anti-inflammatory therapies

    Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy

    Get PDF
    Pregnancy is characterized by a complexity of metabolic processes that may impact fetal development and ultimately, infant health outcomes. However, our understanding of whole body maternal and fetal metabolism during this critical life stage remains incomplete. The objective of this study is to utilize metabolomics to profile longitudinal patterns of fasting maternal metabolites among a cohort of non-diabetic, healthy pregnant women in order to advance our understanding of changes in protein and lipid concentrations across gestation, the biochemical pathways by which they are metabolized and to describe variation in maternal metabolites between ethnic groups. Among 160 pregnant women, amino acids, tricarboxylic acid (TCA) cycle intermediates, keto-bodies and non-esterified fatty acids were detected by liquid chromatography coupled with mass spectrometry, while polar lipids were detected through flow-injected mass spectrometry. The maternal plasma concentration of several essential and non-essential amino acids, long-chain polyunsaturated fatty acids, free carnitine, acetylcarnitine, phosphatidylcholines and sphingomyelins significantly decreased across pregnancy. Concentrations of several TCA intermediates increase as pregnancy progresses, as well as the keto-body β-hydroxybutyrate. Ratios of specific acylcarnitines used as indicators of metabolic pathways suggest a decreased beta-oxidation rate and increased carnitine palmitoyltransferase-1 enzyme activity with advancing gestation. Decreasing amino acid concentrations likely reflects placental uptake and tissue biosynthesis. The absence of any increase in plasma non-esterified fatty acids is unexpected in the catabolic phase of later pregnancy and may reflect enhanced placental fatty acid uptake and utilization for fetal tissue growth. While it appears that energy production through the TCA cycle increases as pregnancy progresses, decreasing patterns of free carnitine and acetylcarnitine as well as increased carnitine palmitoyltransferase-1 rate and β-hydroxybutyrate levels suggest a concomitant upregulation of ketogenesis to ensure sufficient energy supply in the fasting state. Several differences in metabolomic profiles between Hispanic and non-Hispanic women demonstrate phenotypic variations in prenatal metabolism which should be considered in future studies

    The brain's supply and demand in obesity

    Get PDF
    During psychosocial stress, the brain demands extra energy from the body to satisfy its increased needs. For that purpose it uses a mechanism referred to as “cerebral insulin suppression” (CIS). Specifically, activation of the stress system suppresses insulin secretion from pancreatic beta-cells, and in this way energy—particularly glucose—is allocated to the brain rather than the periphery. It is unknown, however, how the brain of obese humans organizes its supply and demand during psychosocial stress. To answer this question, we examined 20 obese and 20 normal weight men in two sessions (Trier Social Stress Test and non-stress control condition followed by either a rich buffet or a meager salad). Blood samples were continuously taken and subjects rated their vigilance and mood by standard questionnaires. First, we found a low reactive stress system in obesity. While obese subjects showed a marked hormonal response to the psychosocial challenge, the cortisol response to the subsequent meal was absent. Whereas the brains of normal weight subjects demanded for extra energy from the body by using CIS, CIS was not detectable in obese subjects. Our findings suggest that the absence of CIS in obese subjects is due to the absence of their meal-related cortisol peak. Second, normal weight men were high reactive during psychosocial stress in changing their vigilance, thereby increasing their cerebral energy need, whereas obese men were low reactive in this respect. Third, normal weight subjects preferred carbohydrates after stress to supply their brain, while obese men preferred fat and protein instead. We conclude that the brain of obese people organizes its need, supply, and demand in a low reactive manner

    Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    Get PDF
    Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice

    Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures

    Get PDF
    Characterization of cortisol production, regulation and function is of considerable interest and relevance given its ubiquitous role in virtually all aspects of physiology, health and disease risk. The quantification of cortisol concentration in hair has been proposed as a promising approach for the retrospective assessment of integrated, long-term cortisol production. However, human research is still needed to directly test and validate current assumptions about which aspects of cortisol production and regulation are reflected in hair cortisol concentrations (HCC). Here, we report findings from a validation study in a sample of 17 healthy adults (mean ± SD age: 34 ± 8.6 yrs). To determine the extent to which HCC captures cumulative cortisol production, we examined the correspondence of HCC, obtained from the first 1cm scalp-near hair segment, assumed to retrospectively reflect 1-month integrated cortisol secretion, with 30-day average salivary cortisol area-under-the curve (AUC) based on 3 samples collected per day (on awakening, +30 min, at bedtime) and the average of 4 weekly 24-hr urinary free cortisol (UFC) assessments. To further address which aspects of cortisol production and regulation are best reflected in the HCC measure, we also examined components of the salivary measures that represent: 1) production in response to the challenge of awakening (using the cortisol awakening response [CAR]), and 2) chronobiological regulation of cortisol production (using diurnal slope). Finally, we evaluated the test-retest stability of each cortisol measure. Results indicate that HCC was most strongly associated with the prior 30-day integrated cortisol production measure (average salivary cortisol AUC) (r = 0.61, p = 0.01). There were no significant associations between HCC and the 30-day summary measures using CAR or diurnal slope. The relationship between 1-month integrated 24-hr UFC and HCC did not reach statistical significance (r = 0.30, p = 0.28). Lastly, of all cortisol measures, test-retest correlations of serial measures were highest for HCC (month-to-month: r = 0.84, p < 0.001), followed by 24-hr UFC (week-to-week: r’s between 0.59 and 0.68, ps < 0.05) and then integrated salivary cortisol concentrations (week-to-week: r’s between 0.38 and 0.61, p’s between 0.13 and 0.01). These findings support the contention that HCC provides a reliable estimate of long-term integrated free cortisol production that is aligned with integrated salivary cortisol production measured over a corresponding one-month period

    A novel maturation index based on neonatal diffusion tensor imaging reflects typical perinatal white matter development in humans

    Get PDF
    Human birth presents an abrupt transition from intrauterine to extrauterine life. Here we introduce a novel Maturation Index (MI) that considers the relative importance of gestational age at birth and postnatal age at scan in a General Linear Model. The MI is then applied to Diffusion Tensor Imaging (DTI) in newborns for characterizing typical white matter development in neonates. DTI was performed cross-sectionally in 47 neonates (gestational age at birth=39.1±1.6 weeks [GA], postnatal age at scan=25.5±12.2days [SA]). Radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA) along 27 white matter fiber tracts were considered. The MI was used to characterize inflection in maturation at the time of birth using GLM estimated rates of change before and after birth. It is proposed that the sign (positive versus negative) of MI reflects the period of greatest maturation rate. Two general patterns emerged from the MI analysis. First, RD and AD (but not FA) had positive MI on average across the whole brain (average MIAD=0.31±0.42, average MIRD=0.22±0.34). Second, significant regions of negative MI in RD and FA (but not AD) were observed in the inferior corticospinal regions, areas known to myelinate early. Observations using the proposed method are consistent with proposed models of the white matter maturation process in which pre-myelination is described by changes in AD and RD due to oligodendrocyte proliferation while true myelination is characterized by changes in RD and FA due to myelin formation
    corecore