1,120 research outputs found

    Time expansion in distributed optical fiber sensing

    Get PDF
    The work of MRFR and HFM was supported by the MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU»/PRTR under grants RYC2021-032167-I and RYC2021- 035009-I. The work of MSA and VD was supported by MCIN/AEI/10.13039/ 501100011033 and the FSE invierte en tu futuro under grants PRE-2019- 087444 and RYC-2017-23668, respectively.Distributed optical fiber sensing (DOFS) technology has recently experienced an impressive growth in various fields including security, structural monitoring and seismology, among others. This expansion has been accompanied by a speedy development of the technology in the last couple of decades, reaching remarkable performance in terms of sensitivity, range, number of independent sensing points and affordable cost per monitored point as compared with competing technologies such as electrical or point optical sensors. Phase-sensitive Optical Time-Domain Reflectometry (ϕOTDR) is a particularly interesting DOFS technique, since it enables real-time monitoring of dynamic variations of physical parameters over a large number of sensing points. Compared to their frequency-domain counterparts (OFDR), ϕOTDR sensors typically provide higher dynamics and longer ranges but significantly worse spatial resolutions. Very recently, a novel ϕOTDR approach has been introduced, which covers an existing gap between the long range and fast response of ϕOTDR and the high spatial resolution of OFDR. This technique, termed time-expanded (TE) ϕOTDR, exploits an interferometric scheme that employs two mutually coherent optical frequency combs. In TE-ϕOTDR, a probe comb is launched into the fiber under test. The beating of the backscattered light and a suitable LO comb produces a multi-heterodyne detection process that compresses the spectrum of the probe comb, in turn expanding the detected optical traces in the time-domain. This approach has allowed sensing using ϕOTDR technology with very high resolution (in the cm scale), while requiring outstandingly low detection and acquisition bandwidths (sub-MHz). In this work, we review the fundamentals of TE-ϕOTDR technology and describe the recent developments, focusing on the attainable sensing performance, the existing trade-offs and open working lines of this novel sensing approach.Comunidad de MadridMinisterio de Ciencia e InnovaciónAgencia Estatal de InvestigaciónGeneralitat ValencianaUniversitat Jaume IEuropean Commissio

    Time-expanded phase-sensitive optical time-domain reflectometry

    Get PDF
    Phase-sensitive optical time-domain reflectometry (ΦOTDR) is a well-established technique that provides spatio-temporal measurements of an environmental variable in real time. This unique capability is being leveraged in an ever-increasing number of applications, from energy transportation or civil security to seismology. To date, a wide number of different approaches have been implemented, providing a plethora of options in terms of performance (resolution, acquisition bandwidth, sensitivity or range). However, to achieve high spatial resolutions, detection bandwidths in the GHz range are typically required, substantially increasing the system cost and complexity. Here, we present a novel ΦOTDR approach that allows a customized time expansion of the received optical traces. Hence, the presented technique reaches cm-scale spatial resolutions over 1 km while requiring a remarkably low detection bandwidth in the MHz regime. This approach relies on the use of dual-comb spectrometry to interrogate the fibre and sample the backscattered light. Random phase-spectral coding is applied to the employed combs to maximize the signal-to-noise ratio of the sensing scheme. A comparison of the proposed method with alternative approaches aimed at similar operation features is provided, along with a thorough analysis of the new trade-offs. Our results demonstrate a radically novel high-resolution ΦOTDR scheme, which could promote new applications in metrology, borehole monitoring or aerospace

    Common-Path Dual-Comb Spectroscopy Using a Single Electro-Optic Modulator

    Get PDF
    Dual frequency comb (DFC) spectroscopy using electro-optic comb generators stands out for its flexibility, easy implementation, and low cost. Typically, two combs with different line spacing are generated from a common laser using independent electro-optic comb generators. This approach minimizes the impact of laser phase noise; however, the distinct paths followed by the two combs ultimately limit the attainable signal-to-noise ratio and long-term stability of the system. In this work, a common-path DFC is generated using a single modulator driven by an arbitrary waveform generator, thus enabling a remarkable increase of the system stability (up to 0.8 s of integration time) while maintaining high flexibility. The proposed technique is experimentally validated by implementing a dual frequency comb with 3000 lines, covering an optical bandwidth of 4.5 GHz, and demonstrating an optical-to-radiofrequency compression factor of 7500. Our system is able to measure extremely narrowband optical features (in the MHz range) with an accuracy only limited by the master laser stability

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Teleseisms monitoring using chirped-pulse φOTDR

    Get PDF
    Monitoring of seismic activity around the word is a topic of high interest for the analysis and understanding of deep Earth dynamics. However, the deployment of a homogeneous network of seismic stations both onshore and offshore poses a strong economic challenge that makes this solution practically inviable. Using the pre-existing fiber optical network for seismic monitoring arises as an excellent solution with important advantages in terms of ubiquity and cost. In this communication, we present the detection of an M8.2 earthquake occurred in Fiji Island using distributed acoustic sensing based on chirped-pulse φOTDR. Two sensors were placed simultaneously at two different locations at >9,000 km from the earthquake epicenter: a metropolitan area and a submarine environment. The recorded data is postprocessed using a 2D linear filter to cancel out environmental noise. The resulting signals are compared with the signals acquired by nearby seismometers. The attained good matching between the recorded data and the seismometer data shows the strong potential of the use of the already-deployed communication fiber network for teleseism monitoring

    Impact of self phase modulation on the performance of Brillouin distributed fibre sensors

    Get PDF
    The spectral broadening of the pump pulse through self phase modulation in a time domain distributed Brillouin sensor is demonstrated to have a non-negligible detrimental effect, leading to a doubling of the effective gain linewidth after some 20 km in standard conditions. The theoretical modeling is fully confirmed by experimental results

    Monitoring of a highly flexible aircraft model wing using time-expanded phase-sensitive OTDR

    Get PDF
    In recent years, the use of highly flexible wings in aerial vehicles (e.g., aircraft or drones) has been attracting increasing interest, as they are lightweight, which can improve fuel-efficiency and distinct flight performances. Continuous wing monitoring can provide valuable information to prevent fatal failures and optimize aircraft control. In this paper, we demonstrate the capabilities of a distributed optical fiber sensor based on time-expanded phase-sensitive optical time-domain reflectometry (TE-ΦOTDR) technology for structural health monitoring of highly flexible wings, including static (i.e., bend and torsion), and dynamic (e.g., vibration) structural deformation. This distributed sensing technology provides a remarkable spatial resolution of 2 cm, with detection and processing bandwidths well under the MHz, arising as a novel, highly efficient monitoring methodology for this kind of structure. Conventional optical fibers were embedded in two highly flexible specimens that represented an aircraft wing, and different bending and twisting movements were detected and quantified with high sensitivity and minimal intrusiveness

    Highly-sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    Get PDF
    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of ~10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing
    corecore