14 research outputs found

    Emerging roles of plasmacytoid dendritic cell crosstalk in tumor immunity

    No full text
    Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods

    Influence of Post-Weld Heat Treatment on Microstructure and Toughness Properties of 13MnNiMoR High Strength Low Alloy Steel Weld Joint

    No full text
    Weld and base metals require hot or cold working during the steel equipment manufacturing process. As a result, the components should be subjected to a normalizing heat treatment in order to recover their mechanical properties. In this study, the submerged-arc welding of the high strength low alloy (HSLA) thick steel plate(13MnNiMoR) is adapted for the vessel head under the normalizing and tempering heat treatment. The findings showed that the material toughness decreases after heating to simulate a vessel head forming process. The stamping process is carried out under the conditions of 980 °C for one hour, normalizing at 920 °C for 1 h and tempering between 600–660 °C for 2 h, respectively. The martensite-austenite (M-A) constituent is distributed in granular bainite and the boundary of austenite in island constituent. Therefore, it was deemed to be the most detrimental to Charpy-V impact toughness. Between normalizing and tempering, intercritical normalizing at 740 °C was added. As a result of the ferrite with fine particles M-A constituent, the toughness increases significantly

    Design Mechanism and Property of the Novel Fluorescent Probes for the Identification of Microthrix Parvicella In Situ

    No full text
    In this study, two novel fluorescent probes, probe A and probe B were designed, synthesized and characterized, based on Microthrix parvicella (M. parvicella) preferring to utilize long-chain fatty acid (LCFA), for the labeling of M. parvicella in activated sludge. The molecular structure of probe A and probe B include long-chain alkane and LCFA, respectively. The results indicated that probe A and probe B had a large stokes shift of 118 nm and 120 nm and high quantum yield of 0.1043 and 0.1058, respectively, which were significantly helpful for the fluorescent labeling. As probe A was more stable than probe B in activated sludge, and the fluorescence intensity keep stable during 24 h, probe A was more suitable for labeling M. parvicella in situ. In addition, through the Image Pro Plus 6 (IPP 6) analysis, a quantitative relationship was established between sludge volume index (SVI) and integral optical density (IOD) of the labeled M. parvicella in activated sludge samples. The relationship between IOD and SVI conforms to Logistic curve (R2 = 0.94)

    Fermi arc surface state and topological switch in the gyromagnetic metamaterials

    No full text
    A landmark feature of the Weyl system is that it possesses the Fermi arc surface states. In this work, we demonstrate that the Fermi arc surface states connect the vacuum state and the Weyl points of gyromagnetic metamaterials (GMs). The nonzero Chern numbers and Berry phases show the nontrivial topological property of the GMs in momentum space. Full-wave simulations demonstrate that the chiral surface waves on the boundary between the GMs and vacuum state can achieve robustness against sharp corners of step-type configurations. Remarkably, the topological switch can be realized by adopting the Fermi arc surface states between two different GMs. We theoretically prove that the physical mechanism of realizing topological switch is caused by different gap Chern numbers of the material system. Moreover, the direction of the topological switch can be operated by manipulating the gyromagnetic parameters of the GMs in the ‘button’ region. Our work may provide more flexibility for the flexible and robust topological devices

    The Sources of Sedimentary Organic Matter Traced by Carbon and Nitrogen Isotopes and Environmental Effects during the Past 60 Years in a Shallow Steppe Lake in Northern China

    No full text
    The organic matter of lake sediment plays an important role in paleolimnological reconstruction. Here, we report a detailed study of organic matter components (Corg%, N%, δ13C, δ15N) in a dated sediment core of Hulun Lake in northern China. Multiple mixing models based on the stoichiometric ratios and stable isotopic compositions were applied to quantify the contributions of organic matter sources in lake sediment. The results show that the organic matter in the sediments from Hulun Lake mainly comes from terrestrial organic matter: the proportion of terrestrial organic matter is more than 80%. The results of the SIAR mixing model further reveal that the proportions of terrestrial C3 plants-derived organic matter, soil organic matter, and lake plankton-derived organic matter were 76.0%, 13.9%, and 10.1%, respectively. The organic matter content of lake sediment from terrestrial sources began to increase significantly from 1980 onward, which is consistent with the growth in overgrazing in the Hulun Lake basin. The content of organic matter from endogenous lake-derived sources began to increase significantly after 2000 due to the nutrients gradually becoming concentrated in lake water, indicating that the reduction in rivers’ discharge and the downgrade of the lake water level were the immediate causes of the lake’s environmental deterioration during this period

    A new polyketide, penicillolide from the marine-derived fungus <i>Penicillium sacculum</i>

    No full text
    <p>A new polyketide, penicillolide (<b>1</b>) was isolated from the fermentation broth of the marine-derived fungus <i>Penicillium sacculum</i> GT-308. Compound <b>1</b> is a polyketide with a unique carbon skeleton. The structure of this compound was established via extensive spectroscopic analyses including 1D-, 2D-NMR, and HRESI-MS.</p
    corecore