40 research outputs found

    Evaluation of portable colposcopy and human papillomavirus testing for screening of cervical cancer in rural China

    Get PDF
    OBJECTIVE: To evaluate the use of a portable, rechargeable colposcope combined with human papillomavirus (HPV) testing, as compared with HPV testing alone, for screening of cervical cancer and pre-cancerous lesions. METHODS: This was a cross-sectional study among 488 women in Baoshan County, Yunnan. The women underwent HPV testing followed by Gynocular portable colposcopy with visual inspection with acetic acid. Obvious lesions were biopsied. If portable colposcopy testing was negative but HPV testing was positive, the women underwent follow-up testing with thin-prep cytology and traditional colposcopy. Cervical biopsies were performed for any abnormalities. Histopathology was followed up with diagnosis and treatment. RESULTS: Among 488 women screened with portable colposcopy, 24 women underwent biopsy based on positive colposcopy screening. Of these 24 women, three were HPV positive and 21 were HPV negative. Five women had cervical intra-epithelial neoplasia (CIN) I and one had advanced cervical cancer. Forty-six women tested positive for HPV. Three of these women had screened positive on preliminary colposcopy, with one positive for CIN III/squamous cell carcinoma and one woman with CIN I. Forty-three women underwent follow-up testing with thin-prep cytology. Two women had atypical squamous cells of undetermined significance and five had low-grade squamous intra-epithelial lesions and were biopsied; three women had CIN I, one had CIN II and one had CIN III. HPV testing and portable colposcopy was more sensitive but slightly less specific than portable colposcopy or HPV testing alone. CONCLUSION: While HPV testing has high sensitivity and specificity for the detection of pre-cancerous and cancerous lesions and portable colposcopy has lower specificity, both methods of detection have low positive predictive value and high negative predictive value. In tandem, HPV testing and portable colposcopy had higher sensitivity for detection among women who underwent biopsies. In clinical practice, portable colposcopy was an effective, easy and affordable tool to transport to villages where cytology is not currently feasible

    Investigation of red substances applied to chank shell beads from prehistoric site of Qulong in Ngari Prefecture, Tibet, China

    Get PDF
    “Applying red” is a common phenomenon observed in Chinese archaeological sites, with the red pigments having been identified as red ochre or cinnabar if ever been scientifically analyzed. However, this is not the case for Tibet. Although a relatively large number of red-painted artifacts have been recovered in Tibet dating from the Neolithic Period to the Tubo Dynasty, little effort has been made on the pigment composition. Recently, nearly one hundred red substances covered shell beads made of the scared chank (Turbinella pyrum), a large conch from the Indian Ocean, were unearthed from the Qulong site (c. 800–500 BC) in the Ngari plateau, western Tibet. This shell beads assemblage represents the largest and most concentrated group of chank shell beads recovered in the Tibetan Plateau and its surrounding regions. It provides a crucial clue for exploring the local “applying red” tradition. In this study, eight shell beads excavated from the Qulong site were examined by the Portable Energy-dispersive X-ray Fluorescence Spectrometer (pXRF), X-ray diffraction (XRD), Fourier Transform infra-red spectroscopy (FTIR), and Laser Raman spectroscopy. The results are as follows: 1) the coloring agent of all red pigments on the shell bead is iron oxide, i.e., red ocher; 2) bone powder that has not been heated to high temperatures (above 600°C) and proteinaceous binders were added to the paint on the outer surface of sample QSM1-11a, but the thin layer on its interior surface was without bone powder; 3) bone powder was not added to the red residues on samples other than QSM1-11a, QSM1-13b, and QSM2-12. This research may reveal the complexity and diversity of the red substances applied to shell beads from Qulong, and shed light on our understanding of human practices and local customs in the Tibetan plateau and the surrounding areas in prehistoric times

    Ancient Genomes Reveal the Evolutionary History and Origin of Cashmere-Producing Goats in China

    Get PDF
    Goats are one of the most widespread farmed animals across the world; however, their migration route to East Asia and local evolutionary history remain poorly understood. Here, we sequenced 27 ancient Chinese goat genomes dating from the Late Neolithic period to the Iron Age. We found close genetic affinities between ancient and modern Chinese goats, demonstrating their genetic continuity. We found that Chinese goats originated from the eastern regions around the Fertile Crescent, and we estimated that the ancestors of Chinese goats diverged from this population in the Chalcolithic period. Modern Chinese goats were divided into a northern and a southern group, coinciding with the most prominent climatic division in China, and two genes related to hair follicle development, FGF5 and EDA2R, were highly divergent between these populations. We identified a likely causal de novo deletion near FGF5 in northern Chinese goats that increased to high frequency over time, whereas EDA2R harbored standing variation dating to the Neolithic. Our findings add to our understanding of the genetic composition and local evolutionary process of Chinese goats

    Evolution of prehistoric dryland agriculture in the arid and semi-arid transition zone in northern China.

    Get PDF
    Based on chronological and archaeobotanical studies of 15 Neolithic and Bronze Age sites from the northern Chinese Loess Plateau and southern Inner Mongolia-the agro-pastoral zone of China-we document changes in the agricultural system over time. The results show that wheat and rice were not the major crops of the ancient agricultural systems in these areas, since their remains are rarely recovered, and that millet cultivation was dominant. Millet agriculture increased substantially from 3000 BC-2000 BC, and foxtail millet evidently comprised a high proportion of the cultivated crop plants during this period. In addition, as the human population increased from the Yangshao to the Longshan periods, the length and width of common millet seeds increased by 20-30%. This demonstrates the co-evolution of both plants and the human population in the region. Overall, our results reveal a complex agricultural-gardening system based on the cultivation of common millet, foxtail millet, soybeans and fruit trees, indicating a high food diversity and selectivity of the human population

    Role of <it>sgcR3 </it>in positive regulation of enediyne antibiotic C-1027 production of <it>Streptomyces globisporus </it>C-1027

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>C-1027, produced by <it>Streptomyces globisporus </it>C-1027, is one of the most potent antitumoral agents. The biosynthetic gene cluster of C-1027, previously cloned and sequenced, contains at least three putative regulatory genes, i.e. <it>sgcR1</it>, <it>sgcR2 </it>and <it>sgcR3</it>. The predicted gene products of these genes share sequence similarities to StrR, regulators of AraC/XylS family and TylR. The purpose of this study was to investigate the role of <it>sgcR3 </it>in C-1027 biosynthesis.</p> <p>Results</p> <p>Overexpression of <it>sgcR3 </it>in <it>S. globisporus </it>C-1027 resulted in a 30–40% increase in C-1027 production. Consistent with this, disruption of <it>sgcR3 </it>abolished C-1027 production. Complementation of the <it>sgcR3</it>-disrupted strain R3KO with intact <it>sgcR3 </it>gene could restore C-1027 production. The results from real time RT-PCR analysis in R3KO mutant and wild type strain indicated that not only transcripts of biosynthetic structural genes such as <it>sgcA1 </it>and <it>sgcC4</it>, but also putative regulatory genes, <it>sgcR1 </it>and <it>sgcR2</it>, were significantly decreased in R3KO mutant. The cross-complementation studies showed that <it>sgcR1R2 </it>could functionally complement <it>sgcR3 </it>disruption <it>in trans</it>. Purified N-terminal His<sub>10</sub>-tagged SgcR3 showed specific DNA-binding activity to the promoter region of <it>sgcR1R2</it>.</p> <p>Conclusion</p> <p>The role of SgcR3 has been proved to be a positive regulator of C-1027 biosynthesis in <it>S. globisporus </it>C-1027. SgcR3 occupies a higher level than SgcR1 and SgcR2 in the regulatory hierarchy that controls C-1027 production and activates the transcription of <it>sgcR1 </it>and <it>sgcR2 </it>by binding directly to the promoter region of <it>sgcR1R2</it>.</p

    New genus of extinct Holocene gibbon associated with humans in Imperial China

    Get PDF
    Although all extant apes are threatened with extinction, there is no evidence for human-caused extinctions of apes or other primates in postglacial continental ecosystems, despite intensive anthropogenic pressures associated with biodiversity loss for millennia in many regions. Here, we report a new, globally extinct genus and species of gibbon, Junzi imperialis, described from a partial cranium and mandible from a ~2200- to 2300-year-old tomb from Shaanxi, China. Junzi can be differentiated from extant hylobatid genera and the extinct Quaternary gibbon Bunopithecus by using univariate and multivariate analyses of craniodental morphometric data. Primates are poorly represented in the Chinese Quaternary fossil record, but historical accounts suggest that China may have contained an endemic ape radiation that has only recently disappeared

    Different Effects of Pro‐Inflammatory Factors and Hyperosmotic Stress on Corneal Epithelial Stem/Progenitor Cells and Wound Healing in Mice

    No full text
    Abstract Chronic inflammation and severe dry eye are two important adverse factors for the successful transplant of cultured limbal stem cells. The aim of this study was to investigate the effects of inflammation and hyperosmotic stress (a key pathological factor in dry eye) on corneal epithelial stem cells (CESCs) and corneal epithelial wound healing. We observed that the CESCs exhibited significant morphological changes when treated with interleukin‐1 beta (IL‐1β), tumor necrosis factor alpha (TNF‐α), or hyperosmotic stress. Colony‐forming efficiency or colony‐forming size was decreased with the increasing concentrations of IL‐1β, TNF‐α, or hyperosmotic stress, which was exacerbated when treated simultaneously with pro‐inflammatory factors and hyperosmotic stress. However, the colony‐forming capacity of CESCs recovered more easily from pro‐inflammatory factor treatment than from hyperosmotic stress treatment. Moreover, when compared with pro‐inflammatory factors treatment, hyperosmotic stress treatment caused a more significant increase of apoptotic and necrotic cell numbers and cell cycle arrest in the G2/M phase. Furthermore, the normal ability of corneal epithelial wound healing in the mice model was suppressed by both pro‐inflammatory factors and hyperosmotic stress treatment, and especially severely by hyperosmotic stress treatment. In addition, inflammation combined with hyperosmotic stress treatment induced more serious epithelial repair delays and apoptosis in corneal epithelium. Elevated levels of inflammatory factors were found in hyperosmotic stress‐treated cells and mice corneas, which persisted even during the recovery period. The results suggested that pro‐inflammatory factors cause transient inhibition, while hyperosmotic stress causes severe apoptosis and necrosis, persistent cell cycle arrest of CESCs, and severe corneal wound healing delay. Stem Cells Translational Medicine 2019;8:46–5
    corecore