New genus of extinct Holocene gibbon associated with humans in Imperial China

3

4	Summary: We describe a new globally extinct genus and species of gibbon from
5	a late Holocene royal tomb in China, representing the first documented primate
6	extinction from a postglacial continental ecosystem, and suggesting that until
7	recently eastern Asia supported a previously unknown, historically extinct
8	endemic radiation of apes.
9	
10	Authors: Samuel T. Turvey ^{1,*} , Kristoffer Bruun ² , Alejandra Ortiz ³ , James
11	Hansford ^{1,4} , Songmei Hu ⁵ , Yan Ding ⁵ , Tianen Zhang ⁵ , Helen J. Chatterjee ²
12	
13	¹ Institute of Zoology, Zoological Society of London, Regent's Park, London NW1
14	4RY, UK. ² Department of Genetics, Evolution & Environment, University College
15	London, Gower Street, London WC1E 6BT, UK. ³ Institute of Human Origins,
16	School of Human Evolution and Social Change, Arizona State University, Tempe,
17	AZ 85281, USA. ⁴ Ocean and Earth Science, National Oceanography Centre
18	Southampton, University of Southampton Waterfront Campus, Southampton, UK.
19	⁵ Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China.
20	

21 To whom correspondence should be addressed. Email: <u>samuel.turvey@ioz.ac.uk</u>

22 Although all extant apes are threatened with extinction, there is no 23 evidence for human-caused extinctions of apes or other primates in 24 postglacial continental ecosystems, despite intensive anthropogenic 25 pressures associated with biodiversity loss for millennia in many regions. 26 Here we report a new, globally extinct genus and species of gibbon, Junzi 27 imperialis, described from a partial cranium and mandible from a ~2,200-28 2,300 year-old tomb from Shaanxi, China. Junzi can be differentiated from 29 extant hylobatid genera and the extinct Quaternary gibbon Bunopithecus 30 using univariate and multivariate analyses of craniodental morphometric 31 data. Primates are poorly represented in the Chinese Quaternary fossil 32 record, but historical accounts suggest that China may have contained an 33 endemic ape radiation that has only recently disappeared.

34 A Warring States period tomb excavated in 2004 at Shenheyuan, Xi'an 35 (formerly the ancient capital Chang'an), Shaanxi, possibly attributable to Lady 36 Xia, grandmother of China's first emperor Qin Shihuang (259-210 BC), contains 37 12 pits with animal remains (Fig. 1) (1, 2). Similar tomb menageries are known 38 from other Chinese high-status burials of comparable age (3). Pit K12 contains 39 skeletons of leopard (Panthera pardus), lynx (Lynx lynx), Asiatic black bear 40 (Ursus thibetanus), crane (Grus sp.), domestic mammals and birds (1), and a 41 gibbon (Shaanxi Provincial Institute of Archaeology, Shenheyuan M1K12:3). 42 Gibbons and siamangs (Hylobatidae) include four living genera (Hoolock, 43 Hylobates, Nomascus, Symphalangus) containing 20 species (4, 5). Six extant 44 species are known historically from China (5, 6). Gibbons were considered 45 culturally significant throughout Chinese history; their perceived "noble" 46 characteristics made them symbols of scholar-officials (*junzi*), and they became

47	high-status pets from the Zhou Dynasty (1046-256 BC) (7). They are extremely
48	scarce in China's Pleistocene-Holocene record, and most pre-modern remains
49	are isolated teeth or postcrania insufficiently diagnostic for species-level or
50	genus-level identification (8, 9). The most complete Quaternary Chinese
51	hylobatid is a left mandibular fragment from Chongqing (AMNH-18534),
52	probably early-middle Pleistocene in age, described in 1923 as an extinct genus
53	and species, <i>Bunopithecus sericus</i> (10). In contrast, M1K12:3 includes a partial
54	facial skeleton (missing the posterior neurocranium) with complete anterior
55	dentition, left-right PM3-4 and right M1-2; an associated right M3; a partial
56	mandible with almost complete anterior dentition (missing left I2), left-right
57	pm3-4 and right m1-2; and non-diagnostic right distal forelimb elements (Fig. 1).
58	Destructive sampling of M1K12:3 was not possible due to the unique
59	specimen's protected archaeological status, and previous attempts to amplify
60	DNA from Chinese Holocene samples have often proved unsuccessful due to poor
61	biomolecule preservation under subtropical conditions (11), so we conducted
62	multivariate and univariate morphometric analyses to determine its affinities to
63	other hylobatids. First, we conducted canonical variate analyses (CVA) using 16
64	cranial landmarks shared between M1K12:3 and a dataset including all extant
65	hylobatid genera (<i>Hoolock</i> , n=53; <i>Hylobates</i> , n=327; <i>Nomascus</i> , n=34;
66	<i>Symphalangus</i> , n=63) (<i>12</i> , <i>13</i>). We partially restored a three-dimensional scan of
67	the M1K12:3 cranium before analysis, through mirror-imaging and reference-
68	based reconstruction of the zygomatic bone, zygomatic arch, posterior maxilla
69	and posterior frontal (13). Landmarks are distributed across nearly the entire
70	remaining or restored cranial surface. All CVAs were performed using genus as
71	classifying variable when assessing the position of M1K12:3 in morphospace.

72 Permutation tests (10,000 rounds) for between-group Procrustes and 73 Mahalanobis distances show significant differentiation between all extant genera 74 (p<0.0001, all comparisons), and between M1K12:3 and extant genera (Fig. 2, 75 Table 1, Table S1). CV1 (60.90% variation) is associated with expansion of the 76 facial region and primarily separates *Symphalangus*, the largest, most 77 morphologically distinct hylobatid. CV2 (23.04% variation) represents shape 78 changes to the frontal, orbit and infraorbital region, and strongly differentiates 79 M1K12:3 from extant genera due to its expanded upper anterior neurocranium: 80 M1K12:3 exhibits a more superior position of the frontal posterior margin 81 (bregma, stephanion), the anterior margin (glabella, upper orbital rim) has 82 undergone an inferior shift, the zygomaxillary suture is shortened to give a 83 narrower cheekbone, and molar dentition is more widely set together with an 84 inferior shift (Table S2). Posterior probabilities indicate extremely high 85 classification accuracy (96-97%; Table S3), with M1K12:3 consistently classified 86 as a separate group. 87 We collected molar (M1-3, m1-2) landmark data (homologous landmarks at 88 main cusp tips, 20 (upper) or 22 (lower) semi-landmarks along outline), tooth 89 crown areas (maximum occlusal area), polygon areas (ratio from lines 90 connecting cusps relative to total occlusal area), and cusp angles (calculated 91 from homologous landmark coordinates) from M1K12:3 (13). We compared 92 these data with a new dataset containing morphometric data for 789 hylobatid 93 molars representing 279 individuals (*Hoolock*, n=77; *Hylobates*, n=129; 94 *Nomascus*, n=41; *Symphalangus*, n=32), including all extant Chinese species and 95 AMNH-18534 (13).

96 Permutation tests (10,000 rounds) for Mahalanobis distances again show 97 significant differentiation between all extant genera (p < 0.001, all comparisons), 98 although Procrustes distances do not consistently differentiate extant genera, 99 especially Nomascus (Table S5). M1K12:3 is statistically differentiated from 100 extant genera in several features including occlusal area (significantly larger M2, 101 M3 and m2 than *Hylobates*; significantly smaller M1, m1 and m2 than 102 *Symphalangus*), larger M3 paracone angle than *Nomascus*, and smaller protoconid, metaconid, entoconid and/or hypoconid angles than all genera (Fig. 103 104 S4, Tables S6-S7). CVAs derived from semi-landmark data demonstrate the 105 distinctive molar shape of M1K12:3. M3, m1 and m2 all fall outside the range of 106 extant hylobatid variation (Fig. 2), and have high CVA classification accuracy (76-107 86%; Table S3). Permutation tests for Procrustes and Mahalanobis distances 108 show significant differentiation between M1K12:3 and extant hylobatids for 109 upper and/or lower molar outline; pairwise distances are greater than between 110 extant genera (Table 1, Table S1). CVA for m2, the only tooth shared by M1K12:3 111 and AMNH-18534, demonstrates these specimens are also morphologically 112 distinct (Fig. 2); *Bunopithecus* shows a very different relationship to extant hylobatids compared to M1K12:3, with a likely close relationship to *Hoolock* 113 114 (10).115 While these analyses cannot reconstruct M1K12:3's phylogenetic affinities, 116 even genomic analyses have proved unable to clarify higher-order hylobatid 117 relationships, possibly because living genera diverged through near-

118 instantaneous radiation ~5 million years ago (14). However, cranial and molar

119 data clearly differentiate M1K12:3 from living hylobatids and the only other

120 Chinese Quaternary hylobatid. We therefore describe M1K12:3 as a new extinct

121 genus and species, *Junzi imperialis* (15). Although other Holocene primate losses 122 are known (21 extinctions in "ecologically naïve" Madagascan and Caribbean 123 island faunas, with two species persisting beyond 1500 AD; 16, 17), the 124 disappearance of *J. imperialis* constitutes the first documented postglacial 125 extinction of an ape, or of any continental primate. 126 Gibbons are today restricted to southwestern China (6), with closest 127 populations >1,200km from Chang'an and separated by major drainages (Fig. 1). Large rivers can represent barriers to gene flow in hylobatids (18), providing 128 129 biogeographic support for evolutionary differentiation of central Chinese 130 gibbons. Chang'an was an important regional power centre under the Qin State 131 and became China's political and economic centre during the Han Dynasty (19); 132 gibbons could therefore have been transported to Chang'an as trade items or 133 tributes. However, other mammals from the Shenheyuan tomb still occur in 134 Shaanxi (6), suggesting a similar local origin for M1K12:3. Contemporary 135 accounts describe gibbons being caught near Chang'an into the 10th century (7), 136 and gibbon survival in Shaanxi until the 18th century (20). Southern Shaanxi 137 represents the northern limit of China's subtropical forest ecoregion, and retains 138 remnant populations of primates and other mammals (e.g. giant pandas) that co-139 occurred with gibbons in Quaternary assemblages (6, 21). 140 Global ecosystems have experienced extreme human-caused biodiversity 141 loss in recent centuries, with extinction rates elevated by several orders of 142 magnitude; it is increasingly accepted that a mass extinction is underway (22, 143 *23*). Eastern and southeast Asian biotas have been disrupted disproportionately: 144 this region contains the most threatened mammals (4), and 73% of Asian 145 primates are threatened compared to 60% globally (24). In China, two gibbon

146 species (*Hylobates lar, Nomascus leucogenys*) have recently disappeared, 147 surviving species are all critically endangered, and the Hainan gibbon (Nomascus 148 *hainanus*) may be the world's rarest mammal with ~ 26 surviving individuals (4). 149 The background mammalian extinction rate is estimated at 1.8 150 extinctions/million species/year (22). As 525 Holocene-Recent primates, 151 including 27 apes, are recognized (5, 24, 25), expected background extinction 152 rates are 9.45×10^{-4} /year for primates, and 4.86×10^{-5} /year for apes. We could therefore expect 11.1 background primate extinctions and 57% probability of 153 154 background ape extinction across the 11,700-year Holocene (although only 45% 155 probability of primate extinction and 2% probability of ape extinction since 1500 156 AD, the IUCN threshold used to assess human-caused extinctions (4), and the 157 period into which *J. imperialis* likely persisted). A hypothesis of "natural" rather 158 than anthropogenically-mediated extinction of *J. imperialis* therefore cannot be 159 discarded completely. However, few extinctions across the climatically stable 160 Holocene can even questionably be interpreted as non-anthropogenic (16). 161 Central Chinese landscapes have supported amongst the world's highest human 162 densities for millennia (19), and experienced extensive Holocene mammal 163 extinctions (21). The discovery of M1K12:3 in a tomb provides direct evidence of 164 human exploitation, and extensive deforestation occurred near Chang'an during 165 the late Imperial period, with remaining high-elevation forests representing 166 suboptimal gibbon habitat (26). Analysis of predictors of Chinese Holocene 167 mammal range loss has shown that best-supported models include an index of 168 anthropogenic impact (21), and reconstruction of historical gibbon decline 169 across China demonstrates extinction following a wavefront of directional 170 pressures that matches known human population expansion (20).

171 Although primates are disproportionately threatened today (24), previous studies suggest they have not experienced elevated levels of past 172 173 extinction (27). However, they are under-represented in Quaternary archives, 174 which remain understudied across most areas of primate distribution (8, 21). 175 Our description of *I. imperialis* suggests past human-caused primate diversity 176 loss may be underestimated, with important implications for understanding 177 extinction vulnerability and informing conservation (24). Our findings also emphasize the extreme vulnerability of hylobatids even compared to other 178 179 primates. Historical records document former gibbon occurrence across central 180 and southern China (7, 20), in areas separated from distributions of extant 181 species and *J. imperialis* by major drainages (Fig. 1). These populations may 182 represent undescribed extinct species, suggesting much greater historical loss of 183 global ape diversity. We encourage further investigation of Asian environmental 184 archives to reconstruct past human-caused biodiversity loss in this global 185 conservation hotspot, and provide new insights for understanding faunal 186 vulnerability and resilience to help prevent future extinctions. 187 188 **References and Notes** 189 T. Zhang, N. Hou, Y. Ding, Shaanxi Chang'an faxian Zhanguo Qinlingyuan yizhi 1.

- 190 [Discovery of a Warring States period tomb of the Qin State, Chang'an,
- 191 Shaanxi]. *Zhongguo Wenwubao* **2006**, 1-2 (2006).
- 192 2. Y. Ding, Shenheyuan Zhanguo Qinlingyuan zhuren shitan [Identifying the
- 193 owner of the Shenheyuan Warring States period tomb of the Qin State].
- 194 *Kaogu Yu Wenwu* **2009**, 62-66 (2009).

- 195 3. X. Wang, Han Nanling daxiongmao he xiniu tanyuan [Study on giant panda
- and rhinoceros from the "southern tomb" of the Han Dynasty]. *Kaogu Yu*

197 *Wenwu* **1983**, 89-91 (1983).

- 198 4. IUCN, The Red List of Threatened Species. Version 2017-2 (2017).
- 199 5. P. Fan *et al.*, Description of a new species of *Hoolock* gibbon (Primates:
- Hylobatidae) based on integrative taxonomy. *Am. J. Primatol.* **79**, e22631
 (2017).
- 202 6. A. T. Smith, Y. Xie (Eds.), *A Guide to the Mammals of China* (Princeton
 203 University Press, Princeton, NJ, 2008).
- R. H. Van Gulik, *The Gibbon in China: An Essay in Animal Lore* (E. J. Brill,
 Leiden, 1967).
- 206 8. N. G. Jablonski, G. Chaplin, "The fossil record of gibbons" in *The Gibbons: New*
- 207 Perspectives on Small Ape Socioecology and Population Biology, D. Whittaker,

208 S. Lappan, Eds. (Springer, Dordrecht, 2009), pp. 110-130.

- 209 9. Y. Gu, Preliminary research on the fossil gibbons of the Chinese Pleistocene
 210 and recent. *Hum. Evol.* 4, 509-514 (1989).
- 211 10. A. Ortiz *et al.*, The taxonomic and phylogenetic affinities of *Bunopithecus*

sericus, a fossil hylobatid from the Pleistocene of China. *PLoS ONE* **10**,

e0131206.

214 11. S. T. Turvey et al., Holocene range collapse of giant muntjacs and pseudo-

- endemism in the Annamite large mammal fauna. *J. Biogeogr.* 43, 2250-2260
 (2016).
- 217 12. N. Creel, H. Preuschoft, "Cranial morphology of the lesser apes" in *Gibbon and*
- 218 *Siamang, Vol. 4*, D. M. Rumbaugh, Ed. (Karger, Basel, 1976), pp. 219-303.
- 219 13. Materials and methods are available online as supporting online material.

- 14. L. Carbone *et al.*, Gibbon genome and the fast karyotype evolution of small
 apes. *Nature* 513, 195-201 (2014).
- 15. Systematic paleontology is available online as supporting online material.
- 16. S. T. Turvey, *Holocene Extinctions* (Oxford University Press, Oxford, 2009).
- 224 17. S. B. Cooke, A. L. Rosenberger S. T. Turvey, An extinct monkey from Haiti and

the origins of the Greater Antillean primates. *Proc. Natl Acad. Sci. USA* 108:

226 2699-2704 (2011).

225

- 18. V. N. Thinh *et al.*, Mitochondrial evidence for multiple radiations in the
- evolutionary history of small apes. *BMC Evol. Biol.* **10**, 74 (2010).
- 229 19. L. Liu, X. Chen, *The Archaeology of China: From the Late Paleolithic to the*
- 230 *Early Bronze Age* (Cambridge University Press, Cambridge, 2012).
- 231 20. S. T. Turvey, J. J. Crees, M. M. I. Di Fonzo, Historical data as a baseline for
- 232 conservation: reconstructing long-term faunal extinction dynamics in Late
- 233 Imperial-modern China. *Proc. Roy. Soc. B* 282, 20151299 (2015).
- 234 21. S. T. Turvey, J. J. Crees, Z. Li, J. Bielby, J. Yuan, Long-term archives reveal
- shifting extinction selectivity in China's postglacial mammal fauna. *Proc. Roy.*
- 236 Soc. B **284**, 20171979 (2017).
- 237 22. A. D. Barnosky *et al.*, Has the Earth's sixth mass extinction already arrived?
 238 *Nature* 471, 51-57 (2011).
- 239 23. G. Ceballos *et al.*, Accelerated modern human-induced species losses:
- entering the sixth mass extinction. *Sci. Adv.* **1**, e1400253 (2015).
- 24. A. Estrada *et al.*, Impending extinction crisis of the world's primates: why
- 242 primates matter. *Sci. Adv.* **3**, e1600946 (2017).
- 243 25. A. Nater *et al.*, Morphometric, behavioral, and genomic evidence for a new
- 244 orangutan species. *Curr. Biol.* **27**, 1-12 (2017).

- 245 26. R. B. Marks, *China: An Environmental History* (Rowman & Littlefield, Lanham,
 246 MD, 2017).
- 247 27. S. T. Turvey, S. A. Fritz, The ghosts of mammals past: biological and
- 248 geographical patterns of global mammalian extinction across the Holocene.
- 249 Phil. Trans. Roy. Soc. B **366**, 2564-2576 (2011).
- 250 28. S. Benazzi, G. Gruppioni, D. S. Strait, J. J. Hublin, Technical note: virtual
- 251 reconstruction of KNM-ER 1813 *Homo habilis* cranium. *Am. J. Phys.*
- 252 *Anthropol.* **153**, 154-160 (2014).
- 253 29. P. Gunz, Statistical and Geometric Reconstruction of Hominid Crania:
- *Reconstructing Australopithecine Ontogeny* (PhD dissertation, University of
 Vienna, 2005).
- 256 30. D. C. Adams, F. J. Rohlf, D. E. Slice, Geometric morphometrics: ten years of
- progress following the 'revolution'. *Italian J. Zool.* **71**, 5-16 (2004).
- 258 31. D. F. Wiley, *Landmark Editor 3.0* (IDAV, University of California, Davis, 2006).
- 259 Available at <<u>http://graphics.idav.ucdavis.edu/research/Evo-Morph</u>>
- 260 32. C. P. Klingenberg, MorphoJ: an integrated software package for geometric
- 261 morphometrics. *Molec. Ecol. Res.* **11**, 353-357 (2011).
- 262 33. S. E. Bailey, Neandertal Dental Morphology: Implications For Modern Human
- 263 *Origins* (PhD dissertation, Arizona State University, 2002).
- 264 34. V. C. Pilbrow, Dental Variation in African Apes with Implications For
- 265 Understanding Patterns of Variation in Species of Fossil Apes (PhD
- dissertation, New York University, 2003).
- 267 35. A. Ortiz, The Influence of Development and Homology on Hominin Molar
- 268 *Morphological Diversity* (PhD dissertation, New York University, 2016).

- 269 36. F. J. Rohlf, *Tps Software* (Ecology and Evolution, SUNY at Stony Brook, 2004).
- 270 Available at <<u>http://life.bio.sunysb.edu/morphS</u>>
- 37. S. Molnar, Human tooth wear, tooth function and cultural variability. *Am. J. Phys. Anthropol.* 34, 27-42 (1971).
- 273 38. Ø. Hammer, D. A. T. Harper, P. D. Ryan, PAST: paleontological statistics
- 274 software package for education and data analysis. *Palaeontol. Electronica* **4**,

2751-9 (2001).

- 276 39. A. H. Schultz, Age changes, variability and generic differences in body
- proportions of Recent hominoids. *Folia Primat.* **19**, 338-359 (1973).
- 40. J. Fleagle, *Primate Adaptation and Evolution* (Academic Press, Amsterdam
 and Boston, 2013).
- 280 41. S. Ye, F. Heule, An evaluation of Robert van Gulik's *The Gibbon in China* and
- its place in modern Sinological discourse. *Southeast Rev. Asian Stud.* 35, 141160 (2013).
- 283 42. D. A. Hooijer, Quaternary gibbons from the Malay Archipelago. *Zool. Verhand.*284 *Leiden* 46, 1-42 (1960).
- 285 43. D. R. Swindler, *Primate Dentition: An Introduction to the Teeth of Non-Human*286 *Primates* (Cambridge University Press, Cambridge, 2002).
- 287 44. Y. Zhang, A. Ortiz, K. He, T. Harrison, Fossil gibbons (Mammalia, Hylobatidae)
 288 from the Pleistocene of Chongzuo, Guangxi Zhuang Autonomous Region,
- 289 China. *Vertebrat. PalAsiatic.* (in press).
- 290
- 291 Acknowledgments: Access to collections was provided by: Institute of Zoology,
- 292 Beijing; Kunming Institute of Zoology; South China Institute of Endangered
- 293 Animals; Natural History Museum, London; American Museum of Natural

294	History; Center for the Study of Human Origins; National Museum of Natural
295	History; Museum of Comparative Zoology; Zoological Museum, Vietnam National
296	University. We thank Jessica Korsgaard, Clare Kimock, Heidi Ma and Ben Garrod
297	for assistance.
298	
299	Funding: Research was supported by a Royal Society University Research
300	Fellowship (UF080320/130573).
301	
302	Author contributions: S.T.T. and H.J.C. designed research; J.H., A.O., S.H., Y.D.,
303	T.Z., S.T.T. and K.B. collected data; K.B., A.O. and H.J.C. analysed data; S.T.T., A.O.
304	and H.J.C. wrote the paper.
305	
306	Competing interests: None declared.
307	
308	Data and materials availability: All data needed to evaluate the conclusions in
309	the paper are present in the paper or the Supplementary Materials.
310	
311	Supporting Online Material
312	Materials and methods
313	Systematic paleontology
314	Figs. S1 to S4
315	Tables S1 to S7
316	References (28–44)

- 317 **Fig. 1.** Cranium and mandible of *Junzi imperialis* holotype (M1K12:3): **A**,
- 318 cranium, anterior view; **B**, mandible, lateral view; **C**, upper dentition, occlusal

319 view; **D**, lower dentition, occlusal view; **E**, right M3. Scale bar=10mm. Inset,

- 320 Modern distribution of hylobatids (dark grey; modified from ref. 18) and
- 321 historical distribution across China (pale grey; modified from ref. 20), showing
- 322 Chang'an (star), *Bunopithecus sericus* collection locality (filled circle), and major
- 323 rivers.
- 324
- 325 Fig. 2. Plots of first two canonical variates (CV1-2) of hylobatid cranial and molar
- 326 analyses. M1K12:3, red; *Bunopithecus*, black (m2 only); *Hoolock*, green;
- 327 *Hylobates*, orange; *Nomascus*, purple; *Symphalangus*, blue. Cranial plot includes
- 328 both reconstructions of M1K12:3.

Table 1. Comparisons between M1K12:3 and extant hylobatids for permutation tests (10,000 rounds) of cranial and molar Procrustes

and Mahalanobis distances (bold, significant difference).

Extant	tant Procrustes distance						Mahalanobis distance					
hylobatid		M1	M2	M3	m1	m2		M1	M2	M3	m1	m2
genus	Cranium						Cranium					
Hoolock	>0.001	0.164	0.116	0.117	0.222	0.092	>0.001	0.099	0.075	0.030	0.005	0.006
Hylobates	>0.0001	0.345	0.165	0.191	0.053	0.035	>0.0001	0.161	0.128	0.034	0.010	0.003
Nomascus	0.001	0.437	0.263	0.152	0.399	0.141	>0.001	0.296	0.401	0.062	0.018	0.042
Symphalangus	>0.001	0.030	0.065	0.054	0.823	0.343	>0.001	0.126	>0.001	0.052	0.088	0.004

Supporting Online Material: Materials and methods

1. ZOOARCHAEOLOGICAL DATA COLLECTION

The fragile facial skeleton and mandible of M1K12:3 were scanned at the Shaanxi Provincial Institute of Archaeology using a NextEngine 3D Laser Scanner to capture the entire available surface morphology. ScanStudioHD software (NextEngine, 2006) was used to operate the scanner; we utilized the software's scan-editing features to volumemerge two separate 360° scans that captured the specimen in different orientations, to incorporate as much surface morphology as possible for analysis. This merged threedimensional scan was used for all subsequent cranial, mandibular, and molar morphometric analyses.

2. CRANIAL DATA

Reconstructing M1K12:3

The most superior section of the maxilla of M1K12:3, which forms the narrowest region connecting orbital rim to nasal aperture, is damaged on the right side and has previously been repaired with plaster material. There is also some evidence of taphonomic distortion of the cranium: the right dentition is located slightly more anterior to the left dentition in what appears to be an unnatural degree of asymmetry, which is probably partly caused by the fact that the medial palatine suture is obliterated and the resultant gap between both sides of the palate has been filled with plaster material. There may also be further left/right displacement effects on anatomy located further superior to the palate region. To address this distortion, we only used the

better-preserved right side for shape analyses to avoid the confounding effects of this bilateral asymmetry on results. We removed the plastered area on the upper right maxilla from the three-dimensional scan using Avizo 9.0 (Visualisation Sciences Group, Inc.) and mirror-imaged the preserved area from the left side across the midsagittal plane to restore the upper right maxilla. We also mirror-imaged the better-preserved lower margin of the left orbital rim to restore lost morphology on the right side.

Areas not possible to be restored by mirror-imaging can be estimated through reference-based reconstruction techniques, in which a specifically selected complete reference specimen that is morphologically similar to the target specimen is used to predict missing areas by a thin-plate spline interpolation. The accuracy of such reconstruction depends on the morphological distance between the attempted reconstruction and preserved morphology. Almost all of the neurocranium is missing in M1K12:3, and so any attempt to reconstruct this region when only facial morphology remains would be too extreme to be successful; the extent of an accurate referencebased reconstruction in M1K12:3 is therefore limited to estimating the zygomatic bone, zygomatic arch, posterior maxilla (with M3), and posterior frontal bone. We made three-dimensional scans of two reference crania using the methods described above (Nomascus concolor: NHM 33.4.1.2; Hylobates lar: NHM 55.1499). These taxa were chosen because M1K12:3 appears relatively similar to Nomascus in some facial characteristics (sharing the weakly protruding browridge and high, steep anterior frontal bone characteristic of *Nomascus* relative to other gibbons), and because the high degree of overall morphological similarity between extant gibbons permits selection of references from >1 genus to investigate the extent of morphological variation in producible reconstructions.

We followed the reference-based reconstruction protocol developed by ref. 28. On both reference specimen scans, the midsagittal plane was computed and the entire left hemicranium was removed, and areas on the right hemicranium not selected for reconstruction (the entire neurocranium other than the frontal bone) were selected for removal, to leave only areas congruent with the preserved morphology of M1K12:3 and areas targeted for reconstruction. On the resultant surfaces, we digitized a template for each reference formed of 11 landmarks (bregma, canine fossa, foramen infraorbitale, frontotemporale, glabella, jugale, nasale, nasospinale, orbitale, prosthion, rhinion), 129 curve semi-landmarks (alveolar margin, n=20; anterior nasal aperture, n=9; frontotemporal-zygomatic, n=14; lower zygomatic arch, n=21; midsagittal external, n=25; orbital rim, n=20; upper zygomatic arch, n=20), and 300 surface semi-landmarks, using Viewbox software (dHAL Software, Kifissia, Greece) to map the remaining geometry on the cranial surface; we then used this template to digitize M1K12:3 (the target) with a similar landmark and semi-landmark configuration.

While landmarks remained fixed, we allowed semi-landmarks in both the reference and target specimens to slide along curves (1 degree of freedom, DoF) and surfaces (2 DoF) in order to minimise the bending energy of the thin-plate spline computed between reference and target. Landmarks and semi-landmarks occurring in missing areas of the target specimen (i.e. posterior frontal bone, posterior maxilla, zygomatic bone, zygomatic arch) were declared 'free' and could move without constraints (3 DoF). We then projected the sliding semi-landmarks back onto their respective curves and surfaces. We repeated this spline relaxation and projection process up to a maximum of five times until obtaining a minimum bending energy value, at which point it was necessary to determine by visual inspection whether designating a semi-landmark as "missing" or "present" was correct anatomically, as semi-landmarks that occur around

the edges of preserved morphology may fall into either category after sliding. We reclassified any semi-landmarks that did not fit their original designation and repeated the above sliding process with this adapted semi-landmark coding, repeating this process as many times as was necessary to optimise the distribution of semi-landmarks. Following this repeated process, all points between reference template and target specimen can be considered geometrically corresponding (*29*). We interpolated using the TPS function to transform the 440 landmarks and semi-landmarks of the reference template into the corresponding landmarks and semi-landmarks of M1K12:3, and to warp the surface of the reference template into the area of the target such that the relative transformation required the least possible bending energy. We conducted this process separately for the *Nomascus* and *Hylobates* reference specimens, resulting in two individual reconstructions of M1K12:3 (Fig. S2).

Comparative dataset and landmark data

The comparative dataset used to investigate the cranial morphological affinities of M1K12:3 comes from data collected by ref. 12, the largest available dataset of hylobatid three-dimensional cranial measurements. This dataset consists of 34 three-dimensional anatomical landmarks (Fig. S1) distributed across the cranial surface of 477 hylobatid crania, representing all four extant genera and nearly all extant species: *Hoolock (H. hoolock, H. leucogenys, H. tianxing)*, n=53; *Hylobates (H. agilis, H. albibarbis, H. klossii, H. lar, H. moloch, "H. muelleri"* [combined sample of *H. abbotti, H. funereus* and/or *H. muelleri*], *H. pileatus*), n=327; *Nomascus (N. annamensis, N. concolor, H. gabriellae, N. leucogenys, N. siki*), n=34; *Symphalangus (S. syndactylus*), n=63 (nomenclature adjusted to reflect currently accepted hylobatid taxonomy; 4). It is therefore sufficiently

extensive and diverse to be representative of the extent of cranial morphological variation between extant hylobatids.

We employed landmark-based geometric morphometric techniques (*30*) to analyze cranial shape variation. Of the 34 landmarks available in the comparative dataset, it was possible to place 16 (orbitale interior, zygoorbitale, zygomaxillare, nasomaxillare, nasale, nasospinale, prosthion, postmolare II, bregma, glabella, nasion, nasomaxillary suture, orbitale superior, frontomalare orbitale, stephanion, frontomalare temporale) on the surface of the completed reference-based reconstructions (Fig. S1). All other landmarks were omitted either because they occupied areas not able to be reconstructed, or because precise landmark location on existing morphology was ambiguous due to damage or difficulty extracting surface detail from scan data. We then digitized three-dimensional landmark points on the reconstructions of M1K12:3 using Landmark software version 3.0.0.6 (*31*).

Statistical analyses

We used the software package MorphoJ (*32*) to conduct all geometric morphometric analyses of landmark data. We investigated two different datasets of varying landmark number. First, we analyzed all 34 landmarks without including the reconstructions of M1K12:3, to establish the extent of overall cranial shape variation between the four extant hylobatid genera and determine whether distinct morphotypes can be identified using these data. We then conducted a separate analysis using only the reduced set of 16 landmarks and including the compatible reconstructions of M1K12:3, to assess the morphological affinities of this specimen to extant hylobatids.

We performed Procrustes analysis to eliminate all non-shape elements of variation in the dataset (scaling, rotation and translation), and prepare landmark data to be in the

right format for statistical analysis. We then conducted Principal Component Analysis (PCA) and Canonical Variate Analysis (CVA) of all 34 landmark shape coordinates, and conducted permutation tests (10,000 random permutation rounds) to test for significant shape differences between genera. PCA was unable to differentiate between extant hylobatid genera (results not shown), and so only CVA was used in subsequent analyses.

We then conducted CVA and permutation tests for the reduced dataset containing 16 landmarks and M1K12:3, both to explore how successfully the reduced landmark number was able to replicate results from the 34-landmark analysis, and also to determine the morphological and taxonomic affinities of M1K12:3 to the comparative hylobatid dataset. The two separate reconstructions of M1K12:3 were analysed together in cranial shape analyses as a combined "population" of two samples; each reconstruction was also analysed on its own against the comparative hylobatid dataset using the reduced 16-landmark analysis, with no difference in results (results not shown).

3. MOLAR DATA

Comparative dataset

The comparative molar sample comprises a total of 279 individuals (789 M1-3, m1-2 teeth) representing all four extant hylobatid genera (Table S4). We collected data from skeletal collections in the following institutions: American Museum of Natural History, New York (AMNH); Institute of Zoology, Chinese Academy of Sciences, Beijing (IOZ); Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming (KIZ); Museum of Comparative Zoology, Cambridge, Massachusetts (MCZ); Natural History Museum,

London (NHM); South China Institute of Endangered Animals, Guangzhou (SCIEA); National Museum of Natural History, Washington, D.C. (USNM); Zoological Museum, Vietnam National University, Hanoi (ZMVNU). We obtained provenance information from museum records, and nomenclature was again adjusted to reflect currently accepted hylobatid taxonomy (4). No antimeres were included. We also included the m2 of the holotype of *Bunopithecus sericus* (AMNH-18534; with no known paratypes; *10*).

Data for different specimens were collected using either digital photographs or a NextEngine 3D Laser Scanner. There are no significant differences in molar crown area between data derived from digital photographs and from screenshots of the 3D surface models, in specimens for which both datasets are available (t = -0.457, df = 18, p = 0.653).

Data acquisition and statistical analyses

We conducted all analyses on high-resolution images of the occlusal surface of teeth taken with either a Canon Digital Rebel XT camera with a 75-300 mm lens (for skeletal material) or Amira imaging software (FEI; for laser scans). We oriented each tooth independently following well-known protocols described elsewhere (*10, 33–35*). We imported digital images of the upper and lower molars into Adobe Photoshop® to align the longitudinal groove with the y-axis and the main buccolingual groove with the x-axis. We mirror-imaged right teeth to correspond to the left side, and treated them as such for landmark digitizing and analyses.

Although cusp areas were successfully used in a previous analysis of the dental affinities of *Bunopithecus* to extant hylobatids, we could not use the same set of variables in this study, as most fissures separating the molar cusps of the teeth of M1K12:3 are obliterated by wear or damage. Instead, we collected morphometric data

on crown outline, cusp angles, and crown and polygon areas of these teeth. We placed homologous landmarks at the cusp tips of the four (upper molars) or five (lower molars) main cusps using tpsDig 232 (*36*) (Figs S3-S4). We used these landmarks to calculate the cusp angles formed by the lines connecting the apices of three given adjacent cusps, which were only digitized on unworn or minimally worn teeth (up to wear stage 3 of ref. 37). Similarly, we calculated polygon area as a ratio of the area enclosed by the four (upper molars) or five (lower molars) main cusps relative to the overall crown size. Finally, we collected the crown outline of each tooth in tpsDig 232 (*36*), which allows the automatic placement of coordinates along the 2D contour of an object, using 20 and 22 equidistant semi-landmarks on the upper and lower molars, respectively (Figs S3-S4). We also collected crown area measurements in Adobe Photoshop® from photographs of those teeth in which a millimetre scale was originally added. All occlusal photographs/screenshots and landmarks and area measurements were collected by AO.

We then conducted multivariate analyses on crown outline data. We were unable to collect outline or polygon area for the M1 of M1K12:3 due to damage on its distolingual portion, and could only use data for angles associated with protocone, paracone and metacone of this tooth. We transformed semi-landmarks using a Generalized Procrustes Analysis to remove differences in size and orientation between individuals, conducted PCAs, and used the principal component coordinates to calculate Mahalanobis and Procrustes distances. We also conducted CVAs to determine generic differences between hylobatids and the molar shape affinities of M1K12:3. We quantified accuracy of CVAs by determining the percent of individuals correctly classified. We conducted all analyses in MorphoJ (*32*) and PAST (*38*).

Supporting Online Material: Systematic paleontology

Order Primates Linnaeus 1758 Suborder Haplorhini Pocock 1918 Parvorder Catarrhini Geoffroy 1812 Superfamily Hominoidea Gray 1825 Family Hylobatidae Gray 1870

Remarks: The skull, mandible and dentition of M1K12:3 exhibit a series of key diagnostic characteristics of the Hylobatidae (*39, 40*), including: a small, shallow face with a modest brow ridge; large orbits with protruding rims which are relatively larger than found in the rest of the Hominoidea; a shallow, gracile mandible; long canines with relatively large proximal bucco-lingual width, tapering to a narrow distal point, and with a distinct mesial sectorial ridge running the length of the tooth; low-crowned, relatively simple molars with low and rounded cusps, with a subrectangular crown outline and rounded corners, and with a simple fissure pattern with minimal and poorly defined crests and no secondary wrinkling; upper molars with four cusps, lower molars with five cusps.

Genus Junzi gen. nov.

Type species: Junzi imperialis gen. et sp. nov.

Etymology: *Junzi*, from the pinyin (standard mainland Chinese phonetic alphabet) transliteration of 君子, meaning "scholarly gentleman" or "man of virtue or noble character". Gibbons were widely regarded as a symbol of scholar-officials or *junzi* in ancient China, as the perceived "noble" characteristics of gibbons were considered to accord with the aesthetic taste of both Daoism and traditional Chinese scholars (*7*, *41*). **Diagnosis:** *Junzi* differs from extant and extinct hylobatid genera according to the following characters:

Compared to *Hoolock*, has a steeper frontal region; a more superior nasal bone; an inferior expansion along the lower margin of the nasal aperture; a smaller metaconid angle on m1; a smaller protoconid angle on m2; an entoconid facing the protoconid on m1 and m2; and a more inferior position of m2.

Compared to *Hylobates*, has a steeper frontal region; a more superior nasal bone; an inferior expansion along the lower margin of the nasal aperture, which also protrudes further forward posteriorly together with the position of the prosthion; a larger total occlusal area on M2, M3 and m2; no evidence of M3 reduction; a smaller metaconid angle on m2; a more inferior position of m2; and lacks accessory cusps and crests (e.g. mesial marginal accessory cusps,crista/cristid oblique) in post-canine teeth.

Compared to *Nomascus*, has a steeper frontal region; a more superior nasal bone; an inferior expansion along the lower margin of the nasal aperture, which also protrudes further forward posteriorly; a larger paracone angle on M3; a smaller protoconid angle on m1; a smaller metaconid angle on m2; an entoconid facing the protoconid on m1 and m2; a more inferior position of m2; and lacks well-developed cingular structures in post-canine teeth except for M3, which shows a well-developed lingual cingulum.

Compared to *Symphalangus*, has a steeper frontal region; an enlarged orbit characterized by a lateral and inferior shift; a flatter and smaller nasal bone; a more superior prosthion; a more antero-inferior position of m2; an overall shorter alveolar rim; a smaller total occlusal area on M1, m1 and m2; a smaller protoconid angle on m1;

a smaller entoconid angle on m2; an entoconid facing the protoconid on m1 and m2; and lacks vertical wrinkles on the lingual surface of the protocone.

Compared to *Bunopithecus*, has larger lower molars as a result of distal molar expansion associated with expansion of the talonid (such that the overall area of the talonid is larger than that of the trigonid, rather than having a trigonid larger than the talonid as in *Bunopithecus*), and has a smaller buccolingual mesial/distal molar ratio; and m2 rather than m3 is the biggest tooth in the molar row.

Description: The face is small and shallow, and the frontal, nasal and maxilla are not prognathic compared to Old World monkeys of a similar size. The frontal is gracile with a small indistinct brow ridge; steeply oriented; descending to a narrow nasal aperture with a short nasoalveolar clivus. The maxilla protrudes anteriorly to accommodate enlarged canine roots; infraorbital foramina are present, parallel in position with the upper canines. The frontozygomatic suture is positioned anteriorly. The orbits are relatively large and subcircular, with distinctive orbital rims. The mandible is shallow and gracile, narrow anteriorly with an elongated posterior palatal width. The mandibular body is relatively robust with no mental protuberance, and the mental foramen is parallel with the canines and p3.

The dental formula is 2.1.2.3. The incisors are relatively small and spatulate, with a concave lingual surface. The upper and lower canines are relatively large, such that canine size is at the upper end of the range of variation of extant hylobatids; with relatively large proximal bucco-lingual width, tapering to a narrow distal point, and with a distinct mesial sectorial ridge running their length. Upper premolars possess two main low and rounded cusps, the paracone and protocone; the protocone is less elevated than the paracone. P4 is slightly larger than P3 due to presence of a small and low tubercle on the distolingual portion of the tooth crown, and a barely discernible

distobuccal tubercle at least on the left P4. Mesiodistally, greatest length of P3 is on its buccal portion, and greatest length of P4 is on its lingual portion. The p4 is trapezoidalshaped due to the presence of a very well-developed entoconid. Overall, p4 shape resembles that of *Hoolock hoolock* from Myanmar (*5*), and differs from the oval or round configuration more commonly seen in other hylobatids.

The molars are relatively simple, with low conical cusps and no accessory cusps or crests. The upper molars show the standard hominoid crown configuration, with a subrectangular outline and four low and rounded cusps. A crista obliqua connecting the paracone and metacone is absent or poorly defined. The lingual cusps are less elevated than their buccal counterparts, although this feature is less marked in M3. The hypocone in M1 is relatively small. The protocone is the most well-developed cusp, followed by the metacone. In contrast, the hypocone in M2 and M3 is well-developed, and in M2 is only marginally smaller than the protocone, with all cusps being approximately equal in size. M3 exhibits a small cusp 5 and possibly also a cusp 6 on the distal portion of the tooth. The lower molars also possess a subrectangular crown configuration with well-rounded corners and low cusps, exhibiting the standard hominoid five cusps with a Y-shaped fissure pattern. The crown outline flares slightly distally, so that the talonid is broader than the trigonid. The lingual cusps are slightly more elevated than both the protoconid and the hypoconid. The metaconid is the largest cusp in both m1 and m2. No accessory cusps are present. The entoconid faces the protoconid on m1 and m2. The hypoconulid is centrally located.

Molar proportions show a unique pattern, in which M2 is only marginally larger than M3, and M1 is considerably smaller; extant hylobatids tend to have M1 and M3 that are subequal in size, with M2 being considerably larger. There is no evidence of M3 reduction. Molars also possesses smaller polygon areas relatively to crown size,

suggesting that the cusps are more externally placed than in extant hylobatids. Linear measurements for both upper and lower molars are only slightly larger mesiodistally than buccolingually, with length-breadth indices as follows: M1, 0.98; M2, 1.02; M3, 0.91; m1, 1.10; m2, 1.32. The angle of the paracone is the largest cusp angle in all upper molars, in contrast to all extant hylobatids, and the protocone has a relatively small angle. The angle of the metacone is the largest angle in M2, and the smallest angle in M3. The angles of the protoconid and metaconid are the smallest angles in both m1 and m2, while the angle of the entoconid in m2 is on average the largest for all hylobatid teeth examined.

Junzi imperialis gen. et sp. nov.

Holotype: Shenheyuan M1K12:3 (Fig. 1), comprising a partial facial skeleton missing the posterior neurocranium, with complete anterior dentition, left and right PM3-4 and right M1-2; an associated right M3; and a partial mandible with almost complete anterior dentition (missing left I2), left and right pm3-4 and right m1-2; and right distal forelimb elements.

Etymology: Referring to the discovery of the holotype in a Warring States period imperial or high-status tomb (possibly the tomb of Lady Xia).

Common name: Lady Xia's gibbon or Imperial gibbon.

Type locality: Northwest Shenheyuan plateau (north of the Yu River), Chang'an District, Xi'an Municipality, southern Shaanxi Province, China.

Age: Site not directly dated, but probably from late Warring States period of Zhou Dynasty (*c*.2,200–2,300 BP).

Diagnosis: As for genus.

Description: Morphological description as for genus. Measurements of holotype as follows:

Cranium: I1 buccolingual diameter = 3.94 mm; I1 mesiodistal diameter = 4.91 mm; I2 buccolingual diameter = 4.27 mm; I2 mesiodistal diameter = 4.05 mm; C1 buccolingual diameter = 6.37 mm; C1 mesiodistal diameter = 9.70 mm; C1 labial height = 22.16 mm; P3 buccolingual diameter = 6.29 mm; P3 mesiodistal diameter = 5.26 mm; P4 buccolingual diameter = 6.90 mm; P4 mesiodistal diameter = 5.37 mm; M1 buccolingual diameter = 7.17 mm; M1 mesiodistal diameter = 7.02 mm; M2 buccolingual diameter = 7.81 mm; M2 mesiodistal diameter = 7.98 mm; M3 buccolingual diameter = 7.78 mm; M3 mesiodistal diameter = 7.05 mm; interorbital breadth = 10.31 mm; nasion-nasospinale = 33.22 mm; maximum nasal width = 14.19 mm; canine interalveolar distance = 19.06 mm; palate depth at M1 = 10.88 mm.

Mandible: p3 buccolingual diameter = 8.08 mm; p3 mesiodistal diameter = 4.85 mm; p4 buccolingual diameter = 5.02 mm; p4 mesiodistal diameter = 6.63 mm; m1 buccolingual diameter = 5.85 mm; m1 mesiodistal diameter = 6.45 mm; m2 buccolingual diameter = 6.43 mm; m2 mesiodistal diameter = 8.48 mm; symphyseal height = 21.40 mm; distance between left and right symphyseal fossae = 19.80 mm.

Additional upper and lower molar measurements are given in Tables S6-S7.

The following taxonomically non-diagnostic right distal forelimb elements are also preserved: distal fragment of radius (maximum length = 143.37 mm); distal fragment of ulna (maximum length = 71.77 mm); seven carpals; three metacarpals (largest is the 3rd or 4th right metacarpal; maximum length = 76.53 mm); and four phalanges (1st midline phalange, maximum length = 58.33 mm; 2nd midline phalange, maximum length = 55.56 mm; broken phalange, maximum preserved length = 35.07 mm; small phalange, maximum length = 23.75 mm).

Figure S1. Gibbon cranial landmarks available in Creel and Preuschoft (1976); landmarks used in this study for comparative analysis indicated in red. 1, orbitale inferior; 2, zygoorbitale; 3, zygomaxillare; 4, nasomaxillare; 5, maxillary incision; 6, nasale; 7, nasospinale; 8, prosthion; 9, postmolare II; 10, basion; 11, opisthion; 12, mastoidale; 13, asterion; 14, inion; 15, opisthocranion; 16, lambda; 17, lambda-bregma apex; 18, bregma; 19, bregma-nasion apex; 20, supraglabella; 21, glabella; 22, nasion; 23, nasal roof; 24, nasomaxillary suture; 25, orbitale superior; 26, frontmalare orbitale; 27, maxillofrontale; 28, torion; 29, supratorion; 30, stephanion; 31, supramastoidal crest; 32, frontomalare temporale; 33, euryon; 34, parietal vault elevation.

Figure S2. Reference-based reconstruction of M1K12:3. **A**, Reconstructing M1K12:3 using *Nomascus concolor* reference cranium, showing three-dimensional visualisation of M1K12:3 cranium (partially restored through mirror-imaging) in pale yellow, reconstructed areas in green, landmarks in red, curve semi-landmarks in dark blue, and surface semi-landmarks in light blue. **B**, Partially restored cranium of M1K12:3 based on *Hylobates lar* reference cranium. **C**, Partially restored cranium of M1K12:3 based on *Nomascus concolor* reference cranium.

Figure S3. Landmarks and semi-landmarks used in comparative analysis of upper and lower molars. **a**, Upper molars: Pr, protocone (angle A); Pa, paracone (angle B); M, metacone (angle C); H, hypocone (angle D). **b**, Lower molars: Pd, protoconid (angle A); Md, metaconid (angle B); Ed, entoconid (angle C); Hd, hypoconid (angle D); Hld, hypoconulid (angle E).

Figure S4. Comparisons of molar crown variation between M1K12:3, *Bunopithecus*, and extant hylobatids based on mean shape outlines. Outlines are of left molars; for M1-M3 the lingual surface is located to the left, and for m1-m2 the lingual surface is located to the right in each image. Key: M1K12:3, red; *Bunopithecus*, gray (m2 only); *Hoolock*, green; *Hylobates*, orange; *Nomascus*, purple; *Symphalangus*, blue.

CVA results	Cranium	M1	M2	M3	m1	m2
Axis 1, % variance	60.90	36.58	46.77	43.33	43.67	41.89
Axis 1, Eigenvalue	4.92	1.35	1.11	1.80	2.04	1.85
Axis 2, % variance	23.03	32.19	21.70	29.03	29.37	24.83
Axis 2, Eigenvalue	1.86	1.19	0.51	1.21	1.37	1.09
Axis 3, % variance	10.44	21.26	20.44	16.78	15.82	17.92
Axis 3, Eigenvalue	0.84	0.79	0.48	0.70	0.74	0.79

Table S2. Variance and eigenvalues for cranial and molar CVAs. Data for firstthree axes provided.
Table S3. Cross-validation results for cranial and molar CVAs. Main value = not jackknifed;value in parentheses = jackknifed.

A. Cranium				-		_		_			
	Hoolock	Hylobates		Nomase	cus	Junzi		Sympha	langus	Total	
Hoolock	52 (50)	1 (3)		0 (0)		0 (0)		0 (0)		53	Not jackknifed:
Hylobates	3 (5)	319 (314)		5 (8)		0 (0)		0 (0)		327	97.5% correctly
Nomascus	0 (0)	0 (0)		34 (34)		0 (0)		0 (0)		34	classified
Junzi	0 (0)	0 (0)		0 (0)		2 (2)		0 (0)		2	
Symphalangus	3 (3)	0 (0)		0 (0)		0 (0)		60 (60)		63	Jackknifed:
						0.(0)					96.0% correctly
Total	58 (58)	320 (317)		39 (42)		2 (2)		60 (60)		479	classified
B. M1	** 1 1 .			XX X				· ·		m . 1	
XX 1 1 .	Hylobates	Symphalangi	IS	HOOLOCI	{	Nomasc	us	Junzi		Total	
Hylobates	58 (42)	0(3)		6(10)		1 (8)		0(2)		65	Not jackknifed:
Symphalangus	1(1)	9(6)		0(3)		1(1)		0(0)		11	86.3% correctly
Hoolock	3(7)	1(2)		35 (28)		2(4)		0(0)		41	classified
Nomascus	4 (10)			1(4)		23 (13)		0(0)		28	Iackknifed
Junzi	0(1)	0(0)		0(0)		0(0)		1(0)		1	61.0% correctly
Total	66 (61)	10(12)		42 (45)		27 (26)		1 (2)		146	classified
C M2	00 (01)	10 (12)		12 (15)		27 (20)		1 (2)		110	elassifiea
	Hylohates	Symphalanai	15	Hooloci	k	Nomasc	115	lunzi		Total	
Hylohates	72 (53)	5 (9)	15	14 (23)		7 (12)	u5	0(1)		98	Not jackknifed:
Symphalanaus	0(3)	15(10)		3(4)		0(1)		0(0)		18	76.3% correctly
Hoolock	5 (11)	5(7)		41 (27)		0(5)		0(1)		51	classified
Nomascus	6(7)	0(2)		2(4)		22 (17)		0(0)		30	
lunzi	0(0)			0(0)		0(0)		1(1)		1	Jackknifed:
Junzi				0 (0)		0 (0)		- (-)		-	54.6% correctly
Total	83 (74)	25 (28)		60 (58)		29 (35)		1 (3)		198	classified
D. M3											
	Symphalangus	Hylobates		Hooloci	k	Nomasc	us	Junzi		Total	
Symphalangus	12 (7)	0 (2)		0 (1)		0(2)		0 (0)		12	Not jackknifed:
Hylobates	1 (7)	53 (42)		12 (16)		3 (4)		0 (0)		69	80.7% correctly
Hoolock	0 (0)	3 (6)		27 (20)		1 (5)		0 (0)		31	classified
Nomascus	3 (3)	2 (4)		2 (6)		20 (14)		0 (0)		27	
Junzi	0 (0)	0 (0)		0 (0)		0(1)		1(0)		1	Jackknifed:
T - + - 1	1((17)			41 (42)		24 (20)		1 (0)		140	59.3% correctly
I otal	16(17)	58 (54)		41 (43)		24 (26)		1(0)		140	classified
E. M I	Unlabortoo	Cump halan a		Heeles	1-	Nomaa		I		Tatal	
Ilulahataa	Hylobales		IS	H0010Cl	{	Nomasc	us	Junzi		Total	Notical/mifed
Hylobales	49(37)	2 (0)		8(13)		3 (6)		0(0)		6Z	84.4% correctly
Symphotogy	0(3)	10(2)		0(3)		0(2)		0(0)		10	classified
Nomagana	3(7)	0(2)		$\frac{2}{1}$		1(4)		0(0)		30	·
Nomascus	2 (6)	0(3)		1(3)		16(6)		1(0)		19	lackknifed:
Junzi	0(0)	0(1)		0(0)		0(0)		1(0)		1	50.8% correctly
Total	54 (53)	12 (14)		36 (36)		19(18)		1(1)		122	classified
F. m2		()				_, (_,)		- (-)			
	Symphalangus	Hylobates	H	oolock	Nc	omascus	Bunop	oithecus	Junzi	Total	
Symphalanaus	22 (15)	0(4)	0	(2)	0 ((1)	0 (0)		0(0)	22	Not jackknifed:
Hylobates	1 (3)	84 (71)	12	2 (20)	3 ((6)	0 (0)		0 (0)	100	84.7% correctly
Hoolock	0(1)	2 (10)	39	9 (26)	3 ((6)	0(1)		0 (0)	44	classified
Nomascus	0 (2)	4 (4)	4	(8)	13	B (6)	0(1)		0 (0)	21	
Bunopithecus	0 (0)	0 (0)	0	(1)	0 ((0)	1(0)		0 (0)	1	Jackknifed:
Junzi	0(1)	0 (0)	0	(0)	0 ((0)	0 (0)		1(0)	1	62.4% correctly
Total	23 (22)	90 (89)	55	5 (57)	19	(19)	1(2)		1 (0)	189	classified

Table S5. Significance of comparisons between extant hylobatid genera for permutation tests (10,000 permutation rounds) of molar Procrustes distances. Non-significant differences in red.

	Hoolock	Hylobates	Nomascus
M1			
Hylobates	0.0006		
Nomascus	<.0001	0.0025	
Symphalangus	<.0001	<.0001	0.0104
M2			
Hylobates	<.0001		
Nomascus	<.0001	0.1698	
Symphalangus	<.0001	0.0901	0.0458
M3			
Hylobates	<.0001		
Nomascus	<.0001	0.0031	
Symphalangus	<.0001	0.0064	<.0001
m1			
Hylobates	<.0001		
Nomascus	0.0422	0.0678	
Symphalangus	0.0079	<.0001	0.0346
m2			
Hylobates	<.0001		
Nomascus	0.2157	0.0006	
Symphalangus	<.0001	<.0001	0.0001

Table S6. Linear dimensions of upper and lower molars of *Junzi imperialis* compared with extant hylobatids (in mm). Extant hylobatid data from refs 42-44.

		Junzi	Nomascus	Nomascus	Hoolock	Symphalangus	Hylobates	Hylobates	Hylobates	Hylobates
		imperialis	concolor	leucogenys	hoolock	syndactylus	agilis	lar	moloch	klossii
	Ν	1	8	6	17	36	16	26	11	8
M1	Mediodistal		6.1	6.3	6.7	7.6	5.9	5.7	5.7	5.4
	mean (range)	7.02	(5.9-6.4)	(5.9-6.6)	(6.1-7.2)	(6.0-8.3)	(5.5-6.7)	(5.3-6.2)	(4.7-6.6)	(5.0-5.6)
	Buccolingual		6.8	6.7	7.0	7.2	6.3	6.2	6.3	5.9
	mean (range)	7.17	(6.5-7.3)	(6.2-7.1)	(6.6-7.7)	(6.2-8.3)	(5.7-6.7)	(5.8-7.0)	(5.7-6.8)	(5.4-6.3
	Ν	1	10	10	17	36	17	25	10	8
M2	Mediodistal		6.7	6.7	7.1	8.1	6.0	6.1	6.3	5.4
	mean (range)	7.98	(5.7-7.2)	(6.2-7.1)	(6.7-7.5)	(6.9-9.0)	(5.7-6.5)	(5.2-6.7)	(5.9-7.3)	(5.0-5.8)
	Buccolingual		7.1	7.4	7.7	8.0	6.4	6.5	6.5	5.9
	mean (range)	7.81	(6.5-7.7)	(6.7-7.9)	(7.0-8.1)	(6.9-8.8)	(5.8-6.8)	(6.1-7.0)	(5.7-7,2)	(5.4-6.3)
	Ν	1	7	3	13	26	17	24	9	8
M3	Mediodistal		6.3	5.9	6.4	7.2	5.4	5.3	5.3	4.0
	mean (range)	7.1	(5.6-6.8)	(5.2-6.7)	(5.3-7.0)	(5-5-8.4)	(4.9-6.0)	(4.7-6.2)	(4.7-5.9)	(3.3-4.5)
	Buccolingual		7.1	7.1	7.3	7.7	6.1	6.1	6.2	5.6
	mean (range)	7.8	(6.5-7.7)	(6.4-7.5)	(6.3-8.1)	(7.1-9.1)	(5.2-6.9)	(5.2-6.8)	(5.4-7.0)	(5.4-6.0)
	Ν	1	7	4	16	30	16	25	11	9
m1	Mediodistal		6.8	7.1	6.8	8.0	6.3	6.0	6.3	5.9
	mean (range)	6.45	(6.5-7.2)	(6.7-7.5)	(6.5-7.3)	(6.9-8.7)	(5.6-6.8)	(5.7-6.5)	(5.7-7.2)	(5.7-6.1)
	Buccolingual		5.3	5.4	5.6	6.3	5.2	5.1	5.0	4.8
	mean (range)	5.85	(5.0-5.7)	(5.2-5.7)	(5.0-6.2)	(5.4-6.9)	(5.6-6.8)	(4.6-5.7)	4.4-5.8)	(4.2-5.8)
	Ν	1	9	6	16	30	17	23	10	8
m2	Mediodistal		7.2	7.2	7.6	8.7	6.3	6.2	6.5	6.0
	mean (range)	8.48	(6.9-7.6)	(6.3-7.9)	(7.3-8.5)	(7.5-9.8)	(5.9-6.9)	(5.4-6.6)	(5.7-7.3)	(5.5-6.6)
	Buccolingual		5.8	6.0	6.6	6.9	5.6	5.4	5.6	5.1
	mean (range)	6.43	(5.4-6.3)	(5.5-6.6)	(5.9-7.5)	(6.1-7.5)	(5.2-6.4)	(4.9-6.0)	(4.9-6.3)	(4.8-5.2)

Feetower	M1V12.2	Hoolock		Hylobates			Nomascus				Symphalangus		
Features	MIK12:3	n	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD
M1 ANPARA	1.964	26	1.84	0.08	36	1.77	0.16	7	1.79	0.26	5	1.88	0.07
M1 OCCLAREA	33.226	6	39.62	5.85	19	31.84	3.56	24	34.24	3.41	7	<u>49.62</u>	7.84
M2 APOL	0.336	36	0.36	0.03	73	0.37	0.04	6	0.33	0.02	15	0.34	0.04
M2 ANPROTO	1.307	35	1.33	0.11	69	1.41	0.38	8	1.67	0.78	12	1.31	0.08
M2 ANPARA	1.886	35	1.83	0.09	71	1.82	0.17	8	1.70	0.46	13	1.89	0.09
M2 ANMETA	1.352	36	1.30	0.11	74	1.31	0.16	10	1.33	0.33	13	1.26	0.09
M2 ANHYPO	1.738	33	1.81	0.09	67	1.85	0.26	8	1.77	0.69	13	1.83	0.09
M2 OCCLAREA	44.313	14	44.97	5.83	36	34.21	3.77	27	40.24	4.07	7	57.82	6.87
M3 APOL	0.330	14	0.36	0.03	18	0.36	0.03	6	0.36	0.04	6	0.39	0.05
M3 ANPROTO	1.086	17	1.70	0.53	34	1.95	0.62	7	1.38	0.19	7	1.65	0.62
M3 ANPARA	2.168	16	1.68	0.47	40	1.81	0.51	8	<u>1.95</u>	<u>0.10</u>	6	1.93	0.13
M3 ANMETA	1.133	18	1.39	0.31	37	1.59	0.56	9	1.20	0.10	6	1.43	0.46
M3 ANHYPO	1.895	16	1.72	0.37	34	1.93	0.62	7	1.77	0.10	6	1.90	0.53
M3 OCCLAREA	43.373	8	39.26	3.39	28	<u>26.94</u>	4.18	25	36.01	4.40	9	46.91	6.54
m1 APOL	0.362	21	0.37	0.02	39	0.39	0.04	8	0.37	0.03	5	0.37	0.01
m1 ANPROT	1.416	20	1.52	0.09	47	1.58	0.14	9	<u>1.64</u>	<u>0.04</u>	5	<u>1.58</u>	0.05
m1 ANMET	1.322	20	<u>1.45</u>	<u>0.05</u>	44	1.47	0.15	9	1.37	0.06	5	1.41	0.06
m1 OCCLAREA	31.307	20	32.90	4.21	48	28.36	4.00	19	30.37	3.86	8	<u>44.70</u>	<u>4.18</u>
m2 APOL	0.355	31	0.36	0.03	85	0.37	0.03	8	0.35	0.02	17	0.35	0.02
m2 ANPROT	1.479	32	<u>1.62</u>	0.06	89	1.57	0.08	8	1.58	0.06	17	1.60	0.06
m2 ANMET	1.246	32	1.40	0.09	89	<u>1.47</u>	0.08	9	<u>1.43</u>	0.08	18	1.34	0.14
m2 ANHYP	1.247	32	1.24	0.08	83	1.28	0.13	8	1.26	0.06	18	1.30	0.14
m2 ANENTO	0.999	31	0.82	0.11	83	0.79	0.11	8	0.85	0.09	18	<u>0.71</u>	<u>0.12</u>
m2 ANHYPLID	1.312	32	1.22	0.11	82	1.17	0.14	8	1.17	0.09	18	1.32	0.10
m2 OCCLAREA	40.933	29	43.82	3.94	89	<u>30.94</u>	<u>4.23</u>	21	35.21	5.57	22	<u>54.62</u>	<u>5.45</u>

Table S7. Descriptive statistics for molar cusp angles and polygon and occlusal areas in M1K12:3 and extant hylobatid genera.

ANENTO: angle entoconid: ANHYP: angle hypoconid; ANHYPLID: angle hypoconulid; ANHYPO: angle hypocone; ANMET: angle metaconid; ANMETA: angle metacone; ANPARA: angle paracone; ANPROT: angle protoconid; ANPROTO: angle protocone; APOL: ratio polygon area/crown area; OCCLAREA: total occlusal area in mm². Angles in radians. Bold/underlined values indicate significant differences with M1K12:3 based on 95% confidence intervals (±2 SD). *Bunopithecus sericus* M2 OCCLAREA: 39.79 mm² (Ortiz et al. 2015).

Table S1. Cranial and molar Procrustes and Mahalanobis distances between M1K12:3, E

CRANIUM

Mahalanobis distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangus
Hylobates	4.3368			
Nomascus	4.7009	4.5591		
Symphalangus	5.4607	6.467	7.1752	
M1K12:3	12.3394	13.4255	11.7389	13.6552

M1

Mahalanobis distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangus
Hylobates	2.4141			
Nomascus	3.3487	2.8522		
Symphalangus	4.0065	4.1051	4.0908	
M1K12:3	7.7463	7.333	7.6757	8.5952

M2

Mahalanobis distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangus
Hylobates	1.8286			
Nomascus	3.2851	2.6164		
Symphalangus	2.718	2.6255	3.7378	
M1K12:3	7.2878	7.2019	7.63	7.3878

М3

Mahalanobis distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangus
Hylobates	2.2413			
Nomascus	3.2792	3.2025		
Symphalangus	4.5069	3.9717	4.2337	
M1K12:3	10.1874	10.004	9.0272	9.0861

m1

Mahalanobis distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangus
Hylobates	2.74	157		

Nomascus	3.7097	3.3184		
Symphalangus	3.5873	3.9641	4.067	
M1K12:3	10.8271	11.6648	10.4398	10.1538

m2

Mahalanobis distances among groups:

	Bunopithecus	Hoolock	Hylobates	Nomascus	Symphalangu
Hoolock	8.6494				
Hylobates	8.9645	2.2832			
Nomascus	9.0183	2.3106	2.8501		
Symphalangus	9.6127	4.1005	4.021	4.4259	
M1K12:3	12.5767	13.2441	13.0125	13.136	11.9052

Bunopithecus, and extant hylobatids.

Procrustes distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangu
Hylobates	0.0488			
Nomascus	0.0661	0.0535		
Symphalangus	0.0714	0.0943	0.099	
M1K12:3	0.1389	0.1482	0.1294	0.1412

Procrustes distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangu
Hylobates	0.0164			
Nomascus	0.0256	0.0182		
Symphalangus	0.0391	0.0356	0.0284	
M1K12:3	0.0463	0.04	0.0431	0.0652

Procrustes distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangu
Hylobates	0.0182			
Nomascus	0.0231	0.0119		
Symphalangus	0.0277	0.0163	0.0184	
M1K12:3	0.0449	0.049	0.0517	0.0523

Procrustes distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangu
Hylobates	0.0319			
Nomascus	0.0329	0.0221		
Symphalangus	0.0482	0.0287	0.0399	
M1K12:3	0.0562	0.06	0.0562	0.0634

Procrustes distances among groups:

	Hoolock	Hylobates	Nomascus	Symphalangu
Hylobates	0.02	218		

Nomascus	0.0197	0.0159		
Symphalangus	0.0249	0.04	0.0317	
M1K12:3	0.0449	0.0616	0.0522	0.0369

Procrustes distances among groups:

Bunopithecus	Hoolock	Hylobates	Nomascus
0.0293			
0.0348	0.0166		
0.0301	0.0113	0.0203	
0.0427	0.029	0.0415	0.0285
0.0561	0.059	0.0693	0.0569
	Bunopithecus 0.0293 0.0348 0.0301 0.0427 0.0561	BunopithecusHoolock0.02930.03480.03010.03010.04270.05610.059	BunopithecusHoolockHylobates0.0293.0.03480.01660.03010.01130.02030.04270.0290.04150.05610.0590.0693

'5

'S

'S

'S

'S

Symphalangus

0.0419

ID	Specimen	Tooth type	Sex	Genus	Species	
. Upper der	ntition					
1	AMNH 102026	M2	Female	Hylobates	moloch	
2	AMNH 102093	M2	Male	Symphalangus	syndactylus	
3	AMNH 102161	M1	Male	Hylobates	agilis	
4	AMNH 102161	M2	Male	Hylobates	agilis	
5	AMNH 102162	M1	Male	Hylobates	agilis	
6	AMNH 102162	M2	Male	Hylobates	agilis	
7	AMNH 102186	M2	Female	Symphalangus	syndactylus	
8	AMNH 102189	M1	Male	Symphalangus	syndactylus	
9	AMNH 102193	M1	Male	Symphalangus	syndactylus	
10	AMNH 102193	M2	Male	Symphalangus	syndactylus	
11	AMNH 102195	M2	Female	Symphalangus	syndactylus	
12	AMNH 102195	M3	Female	Symphalangus	syndactylus	
13	AMNH 102197	M2	Female	Symphalangus	syndactylus	
14	AMNH 102198	M 1	Female	Hylobates	agilis	
15	AMNH 102198	M2	Female	Hylobates	agilis	
16	AMNH 102199	M2	Male	Hylobates	agilis	
17	AMNH 102199	M3	Male	Hylobates	agilis	
18	AMNH 102200	M 1	Female	Hylobates	agilis	
19	AMNH 102200	M2	Female	Hylobates	agilis	
20	AMNH 102200	M3	Female	Hylobates	agilis	
21	AMNH 102470	M3	Male	Hylobates	agilis	
22	AMNH 102471	M1	Female	Hylobates	agilis	
23	AMNH 102471	M2	Female	Hylobates	agilis	
24	AMNH 102472	M2	Male	Hylobates	agilis	
25	AMNH 102473	M1	Female	Hylobates	agilis	
26	AMNH 102474	M1	Female	Hylobates	agilis	
27	AMNH 102721	M2	Female	Symphalangus	syndactylus	
28	AMNH 102727	M2	Female	Symphalangus	syndactylus	
29	AMNH 102727	M3	Female	Symphalangus	syndactylus	
30	AMNH 102729	M1	Male	Symphalangus	syndactylus	
31	AMNH 102729	M2	Male	Symphalangus	syndactylus	
32	AMNH 102773	M2	Female	Hylobates	agilis	
33	AMNH 102773	M3	Female	Hylobates	agilis	
34	AMNH 102774	M1	Male	Hylobates	agilis	
35	AMNH 102774	M2	Male	Hylobates	agilis	
36	AMNH 102774	M3	Male	Hylobates	agilis	
37	AMNH 102775	M1	Male	Hylobates	agilis	
38	AMNH 102775	M2	Male	Hylobates	agilis	
39	AMNH 102776	M1	Female	Hylobates	agilis	
40	AMNH 102776	M2	Female	Hylobates	agilis	
40						
40 41	AMNH 102776	M3	Female	Hylobates	agilis	

43	AMNH 102779	M1	Male	Hylobates	agilis
44	AMNH 102779	M2	Male	Hylobates	agilis
45	AMNH 102780	M1	Male	Hylobates	agilis
46	AMNH 102780	M2	Male	Hylobates	agilis
47	AMNH 103243	M2	Male	Hylobates	klossii
48	AMNH 103244	M2	Female	Hylobates	klossii
49	AMNH 103246	M2	Female	Hylobates	klossii
50	AMNH 103246	M3	Female	Hylobates	klossii
51	AMNH 103247	M2	Male	Hylobates	klossii
52	AMNH 103247	M3	Male	Hylobates	klossii
53	AMNH 103250	M2	Male	Hylobates	klossii
54	AMNH 103250	M3	Male	Hylobates	klossii
55	AMNH 103252	M2	Female	Hylobates	klossii
56	AMNH 103252	M3	Female	Hylobates	klossii
57	AMNH 103345	M3	Male	Hylobates	klossii
58	AMNH 103346	M1	Male	Hylobates	klossii
59	AMNH 103346	M2	Male	Hylobates	klossii
60	AMNH 103346	M3	Male	Hylobates	klossii
61	AMNH 103351	M1	Female	Hylobates	klossii
62	AMNH 103351	M2	Female	Hylobates	klossii
63	AMNH 103351	M3	Female	Hylobates	klossii
64	AMNH 103352	M1	Male	Hylobates	klossii
65	AMNH 103352	M2	Male	Hylobates	klossii
66	AMNH 103352	M3	Male	Hylobates	klossii
67	AMNH 103353	M2	Male	Hylobates	klossii
68	AMNH 103403	M3	Female	Hylobates	muelleri
69	AMNH 103441	M1	Male	Hylobates	moloch
70	AMNH 103441	M2	Male	Hylobates	moloch
71	AMNH 103441	M3	Male	Hylobates	moloch
72	AMNH 103442	M2	Female	Hylobates	moloch
73	AMNH 103442	M3	Female	Hylobates	moloch
74	AMNH 103443	M2	Female	Hylobates	moloch
75	AMNH 103443	M3	Female	Hylobates	moloch
76	AMNH 103444	M1	Female	Hylobates	moloch
77	AMNH 103444	M2	Female	Hylobates	moloch
78	AMNH 103445	M3	Female	Hylobates	moloch
79	AMNH 103446	M2	Male	Hylobates	klossii
80	AMNH 103448	M1	Female	Hylobates	moloch
81	AMNH 103448	M2	Female	Hylobates	moloch
82	AMNH 103448	M3	Female	Hylobates	moloch
83	AMNH 103449	M2	Female	Hylobates	moloch
84	AMNH 103449	M3	Female	Hylobates	moloch
85	AMNH 103451	M3	Female	Hylobates	klossii
86	AMNH 103452	M1	Female	Hylobates	moloch

87	AMNH 103452	M3	Female	Hylobates	moloch	
88	AMNH 103454	M1	Male	Hylobates	moloch	
89	AMNH 103454	M2	Male	Hylobates	moloch	
90	AMNH 103454	M3	Male	Hylobates	moloch	
91	AMNH 103665	M3	Female	Hylobates	agilis	
92	AMNH 103723	M2	Male	Hylobates	moloch	
93	AMNH 103723	M3	Male	Hylobates	moloch	
94	AMNH 103725	M1	Female	Hylobates	moloch	
95	AMNH 103726	M1	Male	Hylobates	moloch	
96	AMNH 103726	M2	Male	Hylobates	moloch	
97	AMNH 106053	M2	Male	Hylobates	agilis	
98	AMNH 106053	M3	Male	Hylobates	agilis	
99	AMNH 106322	M2	Male	Hylobates	moloch	
100	AMNH 106326	M3	Female	Hylobates	moloch	
101	AMNH 106327	M1	Female	Hylobates	moloch	
102	AMNH 106327	M2	Female	Hylobates	moloch	
103	AMNH 106327	M3	Female	Hylobates	moloch	
104	AMNH 106328	M1	Female	Hylobates	moloch	
105	AMNH 106332	M1	Female	Hylobates	moloch	
106	AMNH 106332	M2	Female	Hylobates	moloch	
107	AMNH 106571	M1	Male	Hylobates	agilis	
108	AMNH 106571	M2	Male	Hylobates	agilis	
109	AMNH 106572	M1	Male	Hylobates	agilis	
110	AMNH 106572	M2	Male	Hylobates	agilis	
111	AMNH 106572	M3	Male	Hylobates	agilis	
112	AMNH 106573	M3	Female	Hylobates	agilis	
113	AMNH 106574	M1	Male	Hylobates	agilis	
114	AMNH 106574	M2	Male	Hylobates	agilis	
115	AMNH 106575	M2	Female	Hylobates	agilis	
116	AMNH 106576	M2	Male	Hylobates	agilis	
117	AMNH 106576	M3	Male	Hylobates	agilis	
118	AMNH 106578	M2	Male	Hylobates	agilis	
119	AMNH 106578	M3	Male	Hylobates	agilis	
120	AMNH 106579	M1	Male	Hylobates	agilis	
121	AMNH 106579	M2	Male	Hylobates	agilis	
122	AMNH 106579	M3	Male	Hylobates	agilis	
123	AMNH 106580	M2	Female	Hylobates	agilis	
124	AMNH 106582	M3	Female	Symphalangus	syndactylus	
125	AMNH 106583	M2	Female	Symphalangus	syndactylus	
126	AMNH 106583	M3	Female	Symphalangus	syndactylus	
127	AMNH 106675	M3	Male	Hylobates	agilis	
128	AMNH 106676	M1	Male	Hylobates	agilis	
129	AMNH 106676	M2	Male	Hylobates	agilis	
130	AMNH 106677	M1	Female	Hylobates	agilis	

131	AMNH 106677	M2	Female	Hylobates	agilis
132	AMNH 106678	M2	Female	Hylobates	agilis
133	AMNH 106679	M1	Female	Hylobates	agilis
134	AMNH 106679	M2	Female	Hylobates	agilis
135	AMNH 106679	M3	Female	Hylobates	agilis
136	AMNH 106779	M1	Male	Hylobates	moloch
137	AMNH 106779	M2	Male	Hylobates	moloch
138	AMNH 106779	M3	Male	Hylobates	moloch
139	AMNH 106781	M1	Female	Hylobates	moloch
140	AMNH 106781	M2	Female	Hylobates	moloch
141	AMNH 106781	M3	Female	Hylobates	moloch
142	AMNH 106782	M1	Female	Hylobates	moloch
143	AMNH 106782	M2	Female	Hylobates	moloch
144	AMNH 106782	M3	Female	Hylobates	moloch
145	AMNH 106783	M2	Female	Hylobates	moloch
146	AMNH 106783	M3	Female	Hylobates	moloch
147	AMNH 106788	M1	Female	Hylobates	moloch
148	AMNH 106788	M2	Female	Hylobates	moloch
149	AMNH 106788	M3	Female	Hylobates	moloch
150	AMNH 106789	M2	Male	Hylobates	moloch
151	AMNH 106789	M3	Male	Hylobates	moloch
152	AMNH 112667	M2	Female	Hoolock	leuconedys
153	AMNH 112667	M3	Female	Hoolock	leuconedys
154	AMNH 112668	M1	Male	Hoolock	leuconedys
155	AMNH 112668	M2	Male	Hoolock	leuconedys
156	AMNH 112669	M1	Female	Hoolock	leuconedys
157	AMNH 112670	M2	Female	Hoolock	leuconedys
158	AMNH 112671	M2	Male	Hoolock	leuconedys
159	AMNH 112674	M3	Female	Hoolock	sp.
160	AMNH 112677	M1	Female	Hoolock	leuconedys
161	AMNH 112677	M2	Female	Hoolock	leuconedys
162	AMNH 112679	M1	Female	Hoolock	leuconedys
163	AMNH 112679	M2	Female	Hoolock	leuconedys
164	AMNH 112679	M3	Female	Hoolock	leuconedys
165	AMNH 112680	M2	Female	Hoolock	leuconedys
166	AMNH 112681	M2	Male	Hoolock	leuconedys
167	AMNH 112681	M3	Male	Hoolock	leuconedys
168	AMNH 112683	M2	Male	Hoolock	leuconedys
169	AMNH 112685	M1	Male	Hoolock	leuconedys
170	AMNH 112685	M2	Male	Hoolock	leuconedys
171	AMNH 112686	M3	Female	Hoolock	leuconedys
172	AMNH 112687	M2	Female	Hoolock	leuconedys
173	AMNH 112688	M1	Female	Hoolock	hoolock
174	AMNH 112688	M2	Female	Hoolock	hoolock

175	AMNH 112688	M3	Female	Hoolock	hoolock
176	AMNH 112689	M1	Male	Hoolock	hoolock
177	AMNH 112690	M2	Female	Hoolock	hoolock
178	AMNH 112690	M3	Female	Hoolock	hoolock
179	AMNH 112691	M1	Male	Hoolock	hoolock
180	AMNH 112691	M2	Male	Hoolock	hoolock
181	AMNH 112692	M3	Male	Hoolock	hoolock
182	AMNH 112694	M2	Male	Hoolock	hoolock
183	AMNH 112694	M3	Male	Hoolock	hoolock
184	AMNH 112695	M1	Male	Hoolock	hoolock
185	AMNH 112696	M1	Male	Hoolock	hoolock
186	AMNH 112696	M3	Male	Hoolock	hoolock
187	AMNH 112697	M1	Female	Hoolock	hoolock
188	AMNH 112697	M2	Female	Hoolock	hoolock
189	AMNH 112697	M3	Female	Hoolock	hoolock
190	AMNH 112698	M2	Male	Hoolock	hoolock
191	AMNH 112698	M3	Male	Hoolock	hoolock
192	AMNH 112699	M1	Female	Hoolock	hoolock
193	AMNH 112700	M1	Male	Hoolock	hoolock
194	AMNH 112701	M2	Male	Hoolock	hoolock
195	AMNH 112701	M3	Male	Hoolock	hoolock
196	AMNH 112702	M2	Male	Hoolock	hoolock
197	AMNH 112703	M1	Male	Hoolock	hoolock
198	AMNH 112703	M2	Male	Hoolock	hoolock
199	AMNH 112703	M3	Male	Hoolock	hoolock
200	AMNH 112705	M3	Female	Hoolock	hoolock
201	AMNH 112710	M1	Male	Hoolock	hoolock
202	AMNH 112710	M2	Male	Hoolock	hoolock
203	AMNH 112711	M1	Female	Hoolock	leuconedys
204	AMNH 112711	M2	Female	Hoolock	leuconedys
205	AMNH 112711	M3	Female	Hoolock	leuconedys
206	AMNH 112713	M1	Male	Hoolock	leuconedys
207	AMNH 112713	M2	Male	Hoolock	leuconedys
208	AMNH 112713	M3	Male	Hoolock	leuconedys
209	AMNH 112716	M2	Male	Hoolock	leuconedys
210	AMNH 112716	M3	Male	Hoolock	leuconedys
211	AMNH 112717	M1	Female	Hoolock	leuconedys
212	AMNH 112717	M2	Female	Hoolock	leuconedys
213	AMNH 112721	M1	Female	Hoolock	sp.
214	AMNH 112721	M2	Female	Hoolock	sp.
215	AMNH 112960	M1	Male	Hoolock	leuconedys
216	AMNH 112962	M1	Female	Hoolock	leuconedys
217	AMNH 112962	M2	Female	Hoolock	leuconedys
218	AMNH 112965	M1	Female	Hoolock	leuconedys

219	AMNH 114546	M2	Female	Hoolock	sp.
220	AMNH 119601	M1	Unknown	Hylobates	lar
221	AMNH 119601	M2	Unknown	Hylobates	lar
222	AMNH 119602	M1	Unknown	Hylobates	agilis
223	AMNH 119602	M2	Unknown	Hylobates	agilis
224	AMNH 119624	M1	Unknown	Hoolock	sp.
225	AMNH 119624	M2	Unknown	Hoolock	sp.
226	AMNH 130172	M1	Unknown	Hylobates	moloch
227	AMNH 130172	M2	Unknown	Hylobates	moloch
228	AMNH 163630	M1	Male	Hoolock	hoolock
229	AMNH 163630	M2	Male	Hoolock	hoolock
230	AMNH 163630	M3	Male	Hoolock	hoolock
231	AMNH 163631	M1	Male	Hoolock	sp.
232	AMNH 163632	M3	Male	Hoolock	hoolock
233	AMNH 200752	M1	Female	Hylobates	lar
234	AMNH 200752	M2	Female	Hylobates	lar
235	AMNH 200752	M3	Female	Hylobates	lar
236	AMNH 200853	M1	Female	Hylobates	moloch
237	AMNH 200853	M2	Female	Hylobates	moloch
238	AMNH 202384	M2	Male	Hylobates	lar
239	AMNH 32636	M1	Male	Hylobates	muelleri
240	AMNH 32636	M2	Male	Hylobates	muelleri
241	AMNH 32636	M3	Male	Hylobates	muelleri
242	AMNH 43063	M1	Female	Hoolock	sp.
243	AMNH 43063	M2	Female	Hoolock	sp.
244	AMNH 43064	M2	Female	Hoolock	sp.
245	AMNH 54659	M1	Female	Hylobates	lar
246	AMNH 54659	M2	Female	Hylobates	lar
247	AMNH 54659	M3	Female	Hylobates	lar
248	AMNH 54662	M1	Female	Hylobates	lar
249	AMNH 54662	M2	Female	Hylobates	lar
250	AMNH 54662	M3	Female	Hylobates	lar
251	AMNH 54966	M1	Male	Hylobates	lar
252	AMNH 54966	M2	Male	Hylobates	lar
253	AMNH 54966	M3	Male	Hylobates	lar
254	AMNH 83413	M1	Male	Hoolock	hoolock
255	AMNH 83413	M2	Male	Hoolock	hoolock
256	AMNH 83413	M3	Male	Hoolock	hoolock
257	AMNH 83414	M1	Male	Hoolock	hoolock
258	AMNH 83414	M2	Male	Hoolock	hoolock
259	AMNH 83415	M1	Male	Hoolock	hoolock
260	AMNH 83415	M2	Male	Hoolock	hoolock
261	AMNH 83415	M3	Male	Hoolock	hoolock
262	AMNH 83417	M1	Male	Hoolock	hoolock

263	AMNH 83417	M2	Male	Hoolock	hoolock
264	AMNH 83418	M1	Female	Hoolock	hoolock
265	AMNH 83418	M2	Female	Hoolock	hoolock
266	AMNH 83422	M2	Male	Hoolock	hoolock
267	AMNH 83423	M1	Female	Hoolock	hoolock
268	AMNH 83427	M1	Male	Hoolock	hoolock
269	AMNH 83427	M2	Male	Hoolock	hoolock
270	AMNH 87251	M1	Male	Nomascus	concolor
271	AMNH 87251	M2	Male	Nomascus	concolor
272	AMNH 87252	M1	Male	Nomascus	concolor
273	AMNH 87252	M2	Male	Nomascus	concolor
274	AMNH 87252	M3	Male	Nomascus	concolor
275	AMNH 179	M1	Unknown	Hoolock	sp.
276	AMNH 19400	M1	Unknown	Hoolock	sp.
277	AMNH 35613	M1	Male	Symphalangus	syndactylus
278	AMNH 35613	M2	Male	Symphalangus	syndactylus
279	AMNH 41342	M2	Unknown	Hylobates	moloch
280	AMNH 80068	M2	Female	Hoolock	sp.
281	AMNH 80068	M3	Female	Hoolock	sp.
282	AMNH 90268	M2	Female	Symphalangus	syndactylus
283	AMNH 99340	M1	Female	Hoolock	sp.
284	IOZ 25965	M2	Unknown	Hoolock	tianxing
285	IOZ 25965	M3	Unknown	Hoolock	tianxing
286	IOZ 14517 / 80570	M1	Unknown	Nomascus	leucogenys
287	IOZ 14517 / 80570	M2	Unknown	Nomascus	leucogenys
288	IOZ 14517 / 80570	M3	Unknown	Nomascus	leucogenys
289	IOZ 17940	M1	Male	Nomascus	concolor
290	IOZ 17940	M2	Male	Nomascus	concolor
291	IOZ 17940	M3	Male	Nomascus	concolor
292	IOZ 19552	M2	Unknown	Nomascus	leucogenys
293	SCIEA 0088	M1	Female	Nomascus	hainanus
294	SCIEA 0088	M2	Female	Nomascus	hainanus
295	SCIEA 0088	M3	Female	Nomascus	hainanus
296	SCIEA 0503	M1	Male	Nomascus	hainanus
297	SCIEA 0503	M2	Male	Nomascus	hainanus
298	ZMVNU M158	M1	Female	Nomascus	leucogenys
299	ZMVNU M158	M2	Female	Nomascus	leucogenys
300	ZMVNU M158	M3	Female	Nomascus	leucogenys
301	ZMVNU M150	M1	Female	Nomascus	leucogenys
302	ZMVNU M150	M2	Female	Nomascus	leucogenys
303	ZMVNU M150	M3	Female	Nomascus	leucogenys
304	ZMVNU M162	M1	Unknown	Nomascus	nasutus
305	ZMVNU M162	M2	Unknown	Nomascus	nasutus
306	KIZ 640219	M2	Female	Hylobates	lar

307	KIZ 640219	M3	Female	Hylobates	lar
308	KIZ 610006 / 000169	M2	Female	Nomascus	leucogenys
309	KIZ 610006 / 000169	M2	Female	Nomascus	leucogenys
310	KIZ 57240	M1	Male	Nomascus	concolor
311	KIZ 57240	M2	Male	Nomascus	concolor
312	KIZ 57240	M3	Male	Nomascus	concolor
313	KIZ 57239 / 000168	M1	Female	Nomascus	concolor
314	KIZ 57239 / 000168	M2	Female	Nomascus	concolor
315	KIZ 57239 / 000168	M3	Female	Nomascus	concolor
316	KIZ 57240 / 000165	M1	Male	Nomascus	concolor
317	KIZ 57240 / 000165	M2	Male	Nomascus	concolor
318	KIZ 57240 / 000165	M3	Male	Nomascus	concolor
319	KIZ 57243 / 000391	M2	Unknown	Nomascus	concolor
320	KIZ 57243 / 000391	M3	Unknown	Nomascus	concolor
321	KIZ 57241 / 000170	M1	Unknown	Nomascus	concolor
322	KIZ 57241 / 000170	M2	Unknown	Nomascus	concolor
323	KIZ 57241 / 000170	M3	Unknown	Nomascus	concolor
324	KIZ 57242 / 000167	M1	Female	Nomascus	concolor
325	KIZ 57242 / 000167	M2	Female	Nomascus	concolor
326	KIZ 57242 / 000167	M3	Female	Nomascus	concolor
327	KIZ 640290 / 003152	M1	Female	Nomascus	concolor
328	KIZ 640290 / 003152	M2	Female	Nomascus	concolor
329	KIZ 640290 / 003152	M3	Female	Nomascus	concolor
330	KIZ 210828	M 1	Unknown	Hoolock	leuconedys
331	KIZ 210828	M2	Unknown	Hoolock	leuconedys
332	KIZ 210828	M3	Unknown	Hoolock	leuconedys
333	KIZ 2004140	M2	Unknown	Hoolock	leuconedys
334	KIZ 2004140	M3	Unknown	Hoolock	leuconedys
335	KIZ 2004139	M2	Unknown	Hoolock	leuconedys
336	KIZ 2004139	M3	Unknown	Hoolock	leuconedys
337	KIZ 2004138	M3	Unknown	Hoolock	leuconedys
338	KIZ 2004142	M 1	Unknown	Hoolock	leuconedys
339	KIZ 2004142	M2	Unknown	Hoolock	leuconedys
340	KIZ 2004142	M3	Unknown	Hoolock	leuconedys
341	KIZ 2004137	M2	Male	Hoolock	leuconedys
342	KIZ 2004137	M3	Male	Hoolock	leuconedys
343	MCZ 26474	M1	Male	Hoolock	tianxing
344	MCZ 26474	M2	Male	Hoolock	tianxing
345	MCZ 27831	M1	Female	Symphalangus	syndactylus
346	MCZ 27831	M2	Female	Symphalangus	syndactylus
347	MCZ 27831	M3	Female	Symphalangus	syndactylus
348	MCZ 30383	M 1	Unknown	Hoolock	tianxing
349	MCZ 30383	M2	Unknown	Hoolock	tianxing
350	MCZ 30383	M3	Unknown	Hoolock	tianxing

351	MCZ 36031	M1	Male	Symphalangus	syndactylus
352	MCZ 36031	M2	Male	Symphalangus	syndactylus
353	MCZ 36031	M3	Male	Symphalangus	syndactylus
354	MCZ 38114	M1	Male	Nomascus	concolor
355	MCZ 38115	M1	Male	Nomascus	concolor
356	MCZ 38115	M3	Male	Nomascus	concolor
357	MCZ 38115	M3	Male	Nomascus	concolor
358	MCZ 38116	M1	Male	Nomascus	concolor
359	MCZ 38116	M2	Male	Nomascus	concolor
360	MCZ 38116	M3	Male	Nomascus	concolor
361	MCZ 41535	M1	Female	Hylobates	lar
362	MCZ 41535	M2	Female	Hylobates	lar
363	MCZ 41537	M1	Male	Hylobates	lar
364	MCZ 41537	M2	Male	Hylobates	lar
365	MCZ 41546	M1	Female	Hylobates	lar
366	MCZ 41546	M2	Female	Hylobates	lar
367	MCZ 41546	M3	Female	Hylobates	lar
368	NHM 27.12.1.1	M1	Male	Nomascus	gabriellae
369	NHM 27.12.1.1	M2	Male	Nomascus	gabriellae
370	NHM 27.12.1.1	M3	Male	Nomascus	gabriellae
371	NHM 14.12.8.3	M3	Male	Hylobates	lar
372	NHM 14.12.8.1	M2	Male	Hylobates	lar
373	NHM 14.12.8.1	M3	Male	Hylobates	lar
374	NHM 33.4.1.2	M1	Female	Nomascus	concolor
375	NHM 33.4.1.2	M2	Female	Nomascus	concolor
376	NHM 33.4.1.2	M3	Female	Nomascus	concolor
377	NHM 28.7.1.1	M2	Female	Nomascus	leucogenys
378	NHM 28.7.1.1	M3	Female	Nomascus	leucogenys
379	NHM 26.10.4.2	M1	Female	Nomascus	leucogenys
380	NHM 26.10.4.2	M2	Female	Nomascus	leucogenys
381	NHM 26.10.4.2	M3	Female	Nomascus	leucogenys
382	NHM 26.10.4.1	M3	Female	Nomascus	leucogenys
383	NHM 1920.1.26.1	M1	Male	Symphalangus	syndactylus
384	NHM 1920.1.26.1	M2	Male	Symphalangus	syndactylus
385	NHM 1920.1.26.1	M3	Male	Symphalangus	syndactylus
386	USNM 083262	M1	Female	Hylobates	lar
387	USNM 083262	M2	Female	Hylobates	lar
388	USNM 083262	M3	Female	Hylobates	lar
389	USNM 083263	M1	Female	Hylobates	lar
390	USNM 083263	M2	Female	Hylobates	lar
391	USNM 083264	M1	Female	Hylobates	lar
392	USNM 083515	M1	Female	Hylobates	lar
393	USNM 083515	M2	Female	Hylobates	lar
394	USNM 083515	M3	Female	Hylobates	lar

395	USNM 111970	M2	Male	Hylobates	lar
396	USNM 111970	M3	Male	Hylobates	lar
397	USNM 111988	M2	Male	Hylobates	lar
398	USNM 111988	M3	Male	Hylobates	lar
399	USNM 111989	M2	Male	Hylobates	lar
400	USNM 111989	M3	Male	Hylobates	lar
401	USNM 111990	M2	Female	Hylobates	lar
402	USNM 112574	M2	Male	Hylobates	lar
403	USNM 113177	M1	Female	Hylobates	agilis
404	USNM 113177	M2	Female	Hylobates	agilis
405	USNM 114497	M1	Female	Symphalangus	syndactylus
406	USNM 114497	M2	Female	Symphalangus	syndactylus
407	USNM 114497	M3	Female	Symphalangus	syndactylus
408	USNM 123151	M1	Male	Hylobates	agilis
409	USNM 123151	M2	Male	Hylobates	agilis
410	USNM 123151	M3	Male	Hylobates	agilis
411	USNM 124232	M2	Male	Hylobates	lar
412	USNM 124232	M3	Male	Hylobates	lar
413	USNM 124292	M1	Male	Hylobates	lar
414	USNM 124292	M2	Male	Hylobates	lar
415	USNM 141160	M1	Male	Symphalangus	syndactylus
416	USNM 141160	M2	Male	Symphalangus	syndactylus
417	USNM 141160	M3	Male	Symphalangus	syndactylus
418	USNM 141161	M2	Female	Symphalangus	syndactylus
419	USNM 141161	M3	Female	Symphalangus	syndactylus
420	USNM 141163	M2	Male	Symphalangus	syndactylus
421	USNM 143577	M1	Male	Symphalangus	syndactylus
422	USNM 143577	M3	Male	Symphalangus	syndactylus
423	USNM 196783	M3	Male	Hylobates	muelleri
424	USNM 198268	M1	Female	Hylobates	muelleri
425	USNM 198268	M2	Female	Hylobates	muelleri
426	USNM 198268	M3	Female	Hylobates	muelleri
427	USNM 198271	M2	Male	Hylobates	muelleri
428	USNM 198272	M1	Male	Hylobates	muelleri
429	USNM 198272	M2	Male	Hylobates	muelleri
430	USNM 198272	M3	Male	Hylobates	muelleri
431	USNM 198842	M1	Female	Hylobates	muelleri
432	USNM 198843	M1	Female	Hylobates	muelleri
433	USNM 198843	M2	Female	Hylobates	muelleri
434	USNM 199194	M1	Unknown	Hylobates	muelleri
435	USNM 199194	M2	Unknown	Hylobates	muelleri
436	USNM 199194	M3	Unknown	Hylobates	muelleri
437	USNM 201556	M1	Female	Hylobates	pileatus
438	USNM 201556	M2	Female	Hylobates	pileatus

439	USNM 201556	M3	Female	Hylobates	pileatus
440	USNM 240490	M2	Female	Nomascus	leucogenys
441	USNM 240490	M3	Female	Nomascus	leucogenys
442	USNM 240491	M3	Female	Nomascus	leucogenys
443	USNM 240492	M3	Female	Nomascus	leucogenys
444	USNM 241018	M2	Male	Hylobates	pileatus
445	USNM 241018	M3	Male	Hylobates	pileatus
446	USNM 241019	M2	Female	Hylobates	pileatus
447	USNM 241019	M3	Female	Hylobates	pileatus
448	USNM 253405	M1	Female	Hylobates	pileatus
449	USNM 253405	M2	Female	Hylobates	pileatus
450	USNM 257987	M2	Male	Hoolock	sp.
451	USNM 257988	M2	Female	Hoolock	sp.
452	USNM 257995	M1	Male	Nomascus	gabriellae
453	USNM 257995	M2	Male	Nomascus	gabriellae
454	USNM 257996	M1	Male	Nomascus	gabriellae
455	USNM 271331	M2	Male	Hylobates	pileatus
456	USNM 279146	M1	Female	Hoolock	leuconedys
457	USNM 279146	M2	Female	Hoolock	leuconedys
458	USNM 296920	M1	Male	Hylobates	pileatus
459	USNM 296920	M2	Male	Hylobates	pileatus
460	USNM 296920	M3	Male	Hylobates	pileatus
461	USNM 296921	M1	Female	Nomascus	leucogenys
462	USNM 296922	M2	Female	Hylobates	lar
463	USNM 296922	M3	Female	Hylobates	lar
464	USNM 296923	M2	Male	Hylobates	lar
465	USNM 296923	M3	Male	Hylobates	lar
466	USNM 320787	M1	Female	Nomascus	concolor
467	USNM 320787	M2	Female	Nomascus	concolor
468	USNM 320787	M3	Female	Nomascus	concolor
469	USNM 320789	M1	Male	Nomascus	concolor
470	USNM 320789	M2	Male	Nomascus	concolor
471	USNM 320789	M3	Male	Nomascus	concolor
472	USNM 321549	M1	Male	Hylobates	pileatus
473	USNM 321549	M2	Male	Hylobates	pileatus
474	USNM 321549	M3	Male	Hylobates	pileatus
475	USNM 364967	M1	Female	Symphalangus	syndactylus
476	USNM 464992	M1	Female	Nomascus	concolor
477	USNM 464992	M2	Female	Nomascus	concolor
478	USNM 519573	M3	Female	Symphalangus	syndactylus
479	USNM 542282	M1	Male	Nomascus	concolor
480	USNM 542282	M2	Male	Nomascus	concolor
481	USNM 542282	M3	Male	Nomascus	concolor

2. Lower dentition

1	AMNH 100048	m1	Male	Hylobates	sp.
2	AMNH 101695	m2	Unknown	Hylobates	lar
3	AMNH 101695	m3	Unknown	Hylobates	lar
4	AMNH 102026	m1	Female	Hylobates	moloch
5	AMNH 102026	m2	Female	Hylobates	moloch
6	AMNH 102093	m2	Male	Hylobates	moloch
7	AMNH 102093	m3	Male	Hylobates	moloch
8	AMNH 102161	m1	Male	Hylobates	agilis
9	AMNH 102161	m2	Male	Hylobates	agilis
10	AMNH 102161	m3	Male	Hylobates	agilis
11	AMNH 102162	m1	Male	Hylobates	agilis
12	AMNH 102162	m2	Male	Hylobates	agilis
13	AMNH 102189	m1	Male	Symphalangus	syndactylus
14	AMNH 102190	m2	Female	Symphalangus	syndactylus
15	AMNH 102193	m1	Male	Symphalangus	syndactylus
16	AMNH 102193	m2	Male	Symphalangus	syndactylus
17	AMNH 102194	m2	Unknown	Symphalangus	syndactylus
18	AMNH 102195	m3	Female	Symphalangus	syndactylus
19	AMNH 102195	m2	Female	Symphalangus	syndactylus
20	AMNH 102196	m3	Unknown	Symphalangus	syndactylus
21	AMNH 102197	m1	Female	Symphalangus	syndactylus
22	AMNH 102197	m2	Female	Symphalangus	syndactylus
23	AMNH 102197	m3	Female	Symphalangus	syndactylus
24	AMNH 102198	m1	Female	Hylobates	agilis
25	AMNH 102198	m2	Female	Hylobates	agilis
26	AMNH 102199	m2	Male	Hylobates	agilis
27	AMNH 102199	m3	Male	Hylobates	agilis
28	AMNH 102200	m1	Female	Hylobates	agilis
29	AMNH 102200	m2	Female	Hylobates	agilis
30	AMNH 102200	m3	Female	Hylobates	agilis
31	AMNH 102471	m3	Female	Hylobates	agilis
32	AMNH 102473	m1	Female	Hylobates	agilis
33	AMNH 102473	m2	Female	Hylobates	agilis
34	AMNH 102474	m1	Female	Hylobates	agilis
35	AMNH 102720	m3	Unknown	Symphalangus	syndactylus
36	AMNH 102721	m2	Female	Symphalangus	syndactylus
37	AMNH 102721	m3	Female	Symphalangus	syndactylus
38	AMNH 102722	m1	Female	Symphalangus	syndactylus
39	AMNH 102722	m2	Female	Symphalangus	syndactylus
40	AMNH 102724	m2	Male	Symphalangus	syndactylus
41	AMNH 102724	m3	Male	Symphalangus	syndactylus
42	AMNH 102725	m2	Male	Symphalangus	syndactylus
43	AMNH 102725	m3	Male	Symphalangus	syndactylus
44	AMNH 102727	m2	Female	Symphalangus	syndactylus
					· ·

45	AMNH 102729	m1	Male	Symphalangus	syndactylus
46	AMNH 102729	m2	Male	Symphalangus	syndactylus
47	AMNH 102771	m2	Unknown	Hylobates	agilis
48	AMNH 102773	m2	Female	Hylobates	agilis
49	AMNH 102773	m3	Female	Hylobates	agilis
50	AMNH 102774	m2	Male	Hylobates	agilis
51	AMNH 102774	m3	Male	Hylobates	agilis
52	AMNH 102775	m1	Male	Hylobates	agilis
53	AMNH 102775	m2	Male	Hylobates	agilis
54	AMNH 102776	m1	Female	Hylobates	agilis
55	AMNH 102776	m2	Female	Hylobates	agilis
56	AMNH 102776	m3	Female	Hylobates	agilis
57	AMNH 102777	m1	Female	Hylobates	agilis
58	AMNH 102779	m2	Male	Hylobates	agilis
59	AMNH 102779	m3	Male	Hylobates	agilis
60	AMNH 102780	m1	Male	Hylobates	agilis
61	AMNH 102780	m2	Male	Hylobates	agilis
62	AMNH 103243	m2	Male	Hylobates	klossii
63	AMNH 103243	m3	Male	Hylobates	klossii
64	AMNH 103244	m2	Female	Hylobates	klossii
65	AMNH 103244	m3	Female	Hylobates	klossii
66	AMNH 103246	m2	Female	Hylobates	klossii
67	AMNH 103247	m2	Male	Hylobates	klossii
68	AMNH 103252	m2	Female	Hylobates	klossii
69	AMNH 103252	m3	Female	Hylobates	klossii
70	AMNH 103344	m2	Male	Hylobates	klossii
71	AMNH 103345	m2	Male	Hylobates	klossii
72	AMNH 103345	m3	Male	Hylobates	klossii
73	AMNH 103346	m2	Male	Hylobates	klossii
74	AMNH 103346	m3	Male	Hylobates	klossii
75	AMNH 103351	m2	Female	Hylobates	klossii
76	AMNH 103351	m3	Female	Hylobates	klossii
77	AMNH 103352	m1	Male	Hylobates	klossii
78	AMNH 103352	m2	Male	Hylobates	klossii
79	AMNH 103352	m3	Male	Hylobates	klossii
80	AMNH 103353	m1	Male	Hylobates	klossii
81	AMNH 103403	m3	Female	Hylobates	muelleri
82	AMNH 103441	m1	Male	Hylobates	moloch
83	AMNH 103441	m2	Male	Hylobates	moloch
84	AMNH 103441	m3	Male	Hylobates	moloch
85	AMNH 103442	m1	Female	Hylobates	moloch
86	AMNH 103442	m2	Female	Hylobates	moloch
87	AMNH 103442	m3	Female	Hylobates	moloch
88	AMNH 103443	m1	Female	Hylobates	moloch
				-	

89	AMNH 103443	m2	Female	Hylobates	moloch
90	AMNH 103443	m3	Female	Hylobates	moloch
91	AMNH 103444	m1	Female	Hylobates	moloch
92	AMNH 103444	m2	Female	Hylobates	moloch
93	AMNH 103445	m3	Male	Hylobates	moloch
94	AMNH 103446	m1	Male	Hylobates	moloch
95	AMNH 103446	m2	Male	Hylobates	moloch
96	AMNH 103448	m1	Female	Hylobates	moloch
97	AMNH 103448	m2	Female	Hylobates	moloch
98	AMNH 103448	m3	Female	Hylobates	moloch
99	AMNH 103449	m2	Female	Hylobates	moloch
100	AMNH 103449	m3	Female	Hylobates	moloch
101	AMNH 103452	m1	Female	Hylobates	moloch
102	AMNH 103454	m1	Male	Hylobates	moloch
103	AMNH 103454	m2	Male	Hylobates	moloch
104	AMNH 103665	m3	Female	Hylobates	agilis
105	AMNH 103665	m2	Female	Hylobates	agilis
106	AMNH 103666	m3	Male	Hylobates	agilis
107	AMNH 103723	m3	Male	Hylobates	moloch
108	AMNH 103725	m2	Female	Hylobates	moloch
109	AMNH 103726	m1	Male	Hylobates	moloch
110	AMNH 103726	m2	Male	Hylobates	moloch
111	AMNH 106053	m2	Male	Hylobates	agilis
112	AMNH 106053	m3	Male	Hylobates	agilis
113	AMNH 106322	m1	Male	Hylobates	moloch
114	AMNH 106322	m2	Male	Hylobates	moloch
115	AMNH 106326	m2	Female	Hylobates	moloch
116	AMNH 106327	m2	Female	Hylobates	moloch
117	AMNH 106327	m3	Female	Hylobates	moloch
118	AMNH 106328	m2	Female	Hylobates	moloch
119	AMNH 106328	m3	Female	Hylobates	moloch
120	AMNH 106330	m2	Male	Hylobates	moloch
121	AMNH 106330	m3	Male	Hylobates	moloch
122	AMNH 106332	m3	Female	Hylobates	moloch
123	AMNH 106571	m1	Male	Hylobates	agilis
124	AMNH 106571	m2	Male	Hylobates	agilis
125	AMNH 106571	m3	Male	Hylobates	agilis
126	AMNH 106572	m2	Male	Hylobates	agilis
127	AMNH 106572	m3	Male	Hylobates	agilis
128	AMNH 106573	m2	Female	Hylobates	agilis
129	AMNH 106573	m3	Female	Hylobates	agilis
130	AMNH 106576	m3	Male	Hylobates	agilis
131	AMNH 106578	m2	Male	Hylobates	agilis
132	AMNH 106578	m3	Male	Hylobates	agilis

133	AMNH 106579	m1	Male	Hylobates	agilis
134	AMNH 106579	m2	Male	Hylobates	agilis
135	AMNH 106579	m3	Male	Hylobates	agilis
136	AMNH 106580	m2	Female	Hylobates	agilis
137	AMNH 106580	m3	Female	Hylobates	agilis
138	AMNH 106582	m2	Female	Symphalangus	syndactylus
139	AMNH 106582	m3	Female	Symphalangus	syndactylus
140	AMNH 106583	m2	Female	Symphalangus	syndactylus
141	AMNH 106672	m2	Male	Hylobates	agilis
142	AMNH 106675	m2	Male	Hylobates	agilis
143	AMNH 106675	m3	Male	Hylobates	agilis
144	AMNH 106676	m2	Male	Hylobates	agilis
145	AMNH 106676	m3	Male	Hylobates	agilis
146	AMNH 106677	m1	Female	Hylobates	agilis
147	AMNH 106677	m2	Female	Hylobates	agilis
148	AMNH 106678	m2	Female	Hylobates	agilis
149	AMNH 106678	m3	Female	Hylobates	agilis
150	AMNH 106679	m1	Female	Hylobates	agilis
151	AMNH 106679	m3	Female	Hylobates	agilis
152	AMNH 106779	m2	Female	Hylobates	agilis
153	AMNH 106781	m1	Female	Hylobates	moloch
154	AMNH 106781	m2	Female	Hylobates	moloch
155	AMNH 106781	m3	Female	Hylobates	moloch
156	AMNH 106782	m1	Female	Hylobates	moloch
157	AMNH 106782	m2	Female	Hylobates	moloch
158	AMNH 106782	m3	Female	Hylobates	moloch
159	AMNH 106783	m2	Female	Hylobates	moloch
160	AMNH 106788	m1	Female	Hylobates	moloch
161	AMNH 106788	m2	Female	Hylobates	moloch
162	AMNH 106788	m3	Female	Hylobates	moloch
163	AMNH 106789	m2	Male	Hylobates	moloch
164	AMNH 107102	m2	Unknown	Hylobates	moloch
165	AMNH 107102	m3	Unknown	Hylobates	moloch
166	AMNH 112667	m1	Female	Hoolock	leuconedys
167	AMNH 112667	m2	Female	Hoolock	leuconedys
168	AMNH 112667	m3	Female	Hoolock	leuconedys
169	AMNH 112668	m2	Male	Hoolock	leuconedys
170	AMNH 112669	m1	Female	Hoolock	leuconedys
171	AMNH 112670	m1	Female	Hoolock	leuconedys
172	AMNH 112670	m2	Female	Hoolock	leuconedys
173	AMNH 112670	m3	Female	Hoolock	leuconedys
174	AMNH 112671	m1	Male	Hoolock	leuconedys
175	AMNH 112671	m2	Male	Hoolock	leuconedys
176	AMNH 112671	m3	Male	Hoolock	leuconedys

177	AMNH 112674	m2	Female	Hoolock	leuconedys
178	AMNH 112674	m3	Female	Hoolock	leuconedys
179	AMNH 112677	m1	Female	Hoolock	leuconedys
180	AMNH 112677	m2	Female	Hoolock	leuconedys
181	AMNH 112679	m1	Female	Hoolock	leuconedys
182	AMNH 112679	m2	Female	Hoolock	leuconedys
183	AMNH 112680	m3	Female	Hoolock	leuconedys
184	AMNH 112683	m1	Male	Hoolock	leuconedys
185	AMNH 112683	m2	Male	Hoolock	leuconedys
186	AMNH 112683	m3	Male	Hoolock	leuconedys
187	AMNH 112685	m1	Male	Hoolock	leuconedys
188	AMNH 112685	m2	Male	Hoolock	leuconedys
189	AMNH 112687	m2	Female	Hoolock	leuconedys
190	AMNH 112688	m2	Female	Hoolock	hoolock
191	AMNH 112688	m3	Female	Hoolock	hoolock
192	AMNH 112689	m1	Male	Hoolock	hoolock
193	AMNH 112690	m2	Female	Hoolock	hoolock
194	AMNH 112690	m3	Female	Hoolock	hoolock
195	AMNH 112691	m1	Male	Hoolock	hoolock
196	AMNH 112691	m2	Male	Hoolock	hoolock
197	AMNH 112692	m3	Male	Hoolock	hoolock
198	AMNH 112694	m2	Male	Hoolock	hoolock
199	AMNH 112694	m3	Male	Hoolock	hoolock
200	AMNH 112696	m1	Male	Hoolock	hoolock
201	AMNH 112697	m1	Female	Hoolock	hoolock
202	AMNH 112697	m2	Female	Hoolock	hoolock
203	AMNH 112697	m3	Female	Hoolock	hoolock
204	AMNH 112698	m2	Male	Hoolock	hoolock
205	AMNH 112698	m3	Male	Hoolock	hoolock
206	AMNH 112699	m1	Female	Hoolock	hoolock
207	AMNH 112700	m1	Male	Hoolock	hoolock
208	AMNH 112702	m2	Male	Hoolock	hoolock
209	AMNH 112702	m3	Male	Hoolock	hoolock
210	AMNH 112703	m1	Male	Hoolock	hoolock
211	AMNH 112703	m2	Male	Hoolock	hoolock
212	AMNH 112703	m3	Male	Hoolock	hoolock
213	AMNH 112704	m3	Male	Hoolock	hoolock
214	AMNH 112706	m2	Male	Hoolock	hoolock
215	AMNH 112710	m2	Male	Hoolock	hoolock
216	AMNH 112711	m2	Female	Hoolock	leuconedys
217	AMNH 112711	m3	Female	Hoolock	leuconedys
218	AMNH 112713	m2	Male	Hoolock	leuconedys
219	AMNH 112713	m3	Male	Hoolock	leuconedys
220	AMNH 112716	m2	Male	Hoolock	leuconedys

221	AMNH 112716	m3	Male	Hoolock	leuconedys
222	AMNH 112717	m3	Female	Hoolock	leuconedys
223	AMNH 112719	m3	Female	Hoolock	sp.
224	AMNH 112720	m2	Male	Hoolock	sp.
225	AMNH 112720	m3	Male	Hoolock	sp.
226	AMNH 112721	m1	Female	Hoolock	sp.
227	AMNH 112721	m2	Female	Hoolock	sp.
228	AMNH 112960	m2	Male	Hoolock	leuconedys
229	AMNH 112960	m3	Male	Hoolock	leuconedys
230	AMNH 112962	m1	Female	Hoolock	leuconedys
231	AMNH 112962	m2	Female	Hoolock	leuconedys
232	AMNH 112965	m1	Female	Hoolock	leuconedys
233	AMNH 112965	m2	Female	Hoolock	leuconedys
234	AMNH 114546	m3	Female	Hoolock	sp.
235	AMNH 119601	m2	Unknown	Hylobates	lar
236	AMNH 119624	m2	Unknown	Hoolock	sp.
237	AMNH 130172	m1	Unknown	Hylobates	moloch
238	AMNH 130172	m2	Unknown	Hylobates	moloch
239	AMNH 140230	m2	Unknown	Hylobates	lar
240	AMNH 146725	m2	Male	Hylobates	sp.
241	AMNH 163630	m2	Male	Hoolock	hoolock
242	AMNH 163630	m3	Male	Hoolock	hoolock
243	AMNH 163632	m2	Male	Hoolock	hoolock
244	AMNH 163632	m3	Male	Hoolock	hoolock
245	AMNH 19400	m1	Unknown	Hoolock	sp.
246	AMNH 200752	m2	Female	Hylobates	lar
247	AMNH 200853	m1	Female	Hylobates	moloch
248	AMNH 200853	m2	Female	Hylobates	moloch
249	AMNH 202384	m1	Male	Hylobates	lar
250	AMNH 202384	m2	Male	Hylobates	lar
251	AMNH 32636	m1	Male	Hylobates	muelleri
252	AMNH 32636	m2	Male	Hylobates	muelleri
253	AMNH 32636	m3	Male	Hylobates	muelleri
254	AMNH 41342	m2	Unknown	Hylobates	moloch
255	AMNH 41342	m3	Unknown	Hylobates	moloch
256	AMNH 43063	m1	Female	Hoolock	sp.
257	AMNH 43064	m1	Female	Hoolock	sp.
258	AMNH 54659	m1	Female	Hylobates	lar
259	AMNH 54659	m2	Female	Hylobates	lar
260	AMNH 54662	m1	Female	Hylobates	lar
261	AMNH 54662	m2	Female	Hylobates	lar
262	AMNH 54662	m3	Female	Hylobates	lar
263	AMNH 54966	m1	Male	Hylobates	lar
264	AMNH 54966	m2	Male	Hylobates	lar

265	AMNH 83413	m2	Male	Hoolock	hoolock
266	AMNH 83413	m3	Male	Hoolock	hoolock
267	AMNH 83414	m1	Male	Hoolock	hoolock
268	AMNH 83414	m2	Male	Hoolock	hoolock
269	AMNH 83415	m1	Male	Hoolock	hoolock
270	AMNH 83415	m2	Male	Hoolock	hoolock
271	AMNH 83415	m3	Male	Hoolock	hoolock
272	AMNH 83417	m2	Male	Hoolock	hoolock
273	AMNH 83417	m3	Male	Hoolock	hoolock
274	AMNH 83418	m1	Female	Hoolock	hoolock
275	AMNH 83418	m2	Female	Hoolock	hoolock
276	AMNH 83422	m2	Male	Hoolock	hoolock
277	AMNH 83423	m2	Female	Hoolock	hoolock
278	AMNH 83424	m1	Male	Hoolock	hoolock
279	AMNH 83427	m1	Male	Hoolock	hoolock
280	AMNH 87252	m2	Male	Nomascus	concolor
281	AMNH 87252	m3	Male	Nomascus	concolor
282	AMNH 90268	m2	Female	Symphalangus	syndactylus
283	AMNH 90337	m2	Unknown	Symphalangus	syndactylus
284	AMNH 99340	m1	Female	Hoolock	sp.
285	IOZ 25965	m1	Unknown	Hoolock	tianxing
286	IOZ 25965	m2	Unknown	Hoolock	tianxing
287	IOZ 14517 / 80570	m3	Unknown	Nomascus	leucogenys
288	IOZ 17940	m1	Male	Nomascus	concolor
289	IOZ 17940	m2	Male	Nomascus	concolor
290	IOZ 17940	m3	Male	Nomascus	concolor
291	IOZ 19552	m1	Female	Nomascus	leucogenys
292	IOZ 19552	m2	Female	Nomascus	leucogenys
293	IOZ 19552	m3	Female	Nomascus	leucogenys
294	SCIEA 0088	m1	Female	Nomascus	hainanus
295	SCIEA 0088	m2	Female	Nomascus	hainanus
296	SCIEA 0088	m3	Female	Nomascus	hainanus
297	SCIEA 0502	m1	Female	Nomascus	hainanus
298	SCIEA 0502	m2	Female	Nomascus	hainanus
299	SCIEA 0502	m3	Female	Nomascus	hainanus
300	SCIEA 0503	m2	Male	Nomascus	hainanus
301	SCIEA 0503	m3	Male	Nomascus	hainanus
302	ZMVNU M159	m1	Unknown	Nomascus	nasutus
303	ZMVNU M159	m3	Unknown	Nomascus	nasutus
304	ZMVNU M159	m2	Unknown	Nomascus	nasutus
305	ZMVNU M150	m2	Female	Nomascus	leucogenys
306	ZMVNU M150	m3	Female	Nomascus	leucogenys
307	ZMVNU M162	m1	Unknown	Nomascus	nasutus
308	ZMVNU M162	m2	Unknown	Nomascus	nasutus

309	ZMVNU M162	m3	Unknown	Nomascus	nasutus
310	KIZ 640219	m2	Female	Hylobates	lar
311	KIZ 640219	m3	Female	Hylobates	lar
312	KIZ 610006 / 000169	m1	Female	Nomascus	leucogenys
313	KIZ 610006 / 000169	m3	Female	Nomascus	leucogenys
314	KIZ 57240	m2	Male	Nomascus	concolor
315	KIZ 57240	m3	Male	Nomascus	concolor
316	KIZ 57239 / 000168	m2	Female	Nomascus	concolor
317	KIZ 57239 / 000168	m3	Female	Nomascus	concolor
318	KIZ 57243 / 000391	m1	Unknown	Nomascus	concolor
319	KIZ 57243 / 000391	m2	Unknown	Nomascus	concolor
320	KIZ 57243 / 000391	m3	Unknown	Nomascus	concolor
321	KIZ 57241 / 000170	m1	Unknown	Nomascus	concolor
322	KIZ 57241 / 000170	m2	Unknown	Nomascus	concolor
323	KIZ 57241 / 000170	m3	Unknown	Nomascus	concolor
324	KIZ 57242 / 000167	m1	Female	Nomascus	concolor
325	KIZ 57242 / 000167	m2	Female	Nomascus	concolor
326	KIZ 57242 / 000167	m3	Female	Nomascus	concolor
327	KIZ 640290 / 003152	m2	Female	Nomascus	concolor
328	KIZ 640290 / 003152	m3	Female	Nomascus	concolor
329	KIZ 210828	m2	Unknown	Hoolock	leuconedys
330	KIZ 210828	m3	Unknown	Hoolock	leuconedys
331	MCZ 26474	m1	Male	Hoolock	tianxing
332	MCZ 26474	m2	Male	Hoolock	tianxing
333	MCZ 27831	m2	Female	Symphalangus	syndactylus
334	MCZ 27831	m3	Female	Symphalangus	syndactylus
335	MCZ 30383	m1	Unknown	Hoolock	tianxing
336	MCZ 30383	m2	Unknown	Hoolock	tianxing
337	MCZ 30383	m3	Unknown	Hoolock	tianxing
338	MCZ 36031	m1	Male	Symphalangus	syndactylus
339	MCZ 36031	m2	Male	Symphalangus	syndactylus
340	MCZ 36031	m3	Male	Symphalangus	syndactylus
341	MCZ 38114	m1	Male	Nomascus	concolor
342	MCZ 38115	m1	Male	Nomascus	concolor
343	MCZ 38115	m2	Male	Nomascus	concolor
344	MCZ 38115	m3	Male	Nomascus	concolor
345	MCZ 38116	m2	Male	Nomascus	concolor
346	MCZ 38116	m3	Male	Nomascus	concolor
347	MCZ 41535	m1	Female	Hylobates	lar
348	MCZ 41535	m2	Female	Hylobates	lar
349	MCZ 41537	m1	Male	Hylobates	lar
350	MCZ 41537	m2	Male	Hylobates	lar
351	MCZ 41546	m2	Female	Hylobates	lar
352	MCZ 41546	m3	Female	Hylobates	lar

353	NHM 27.12.1.1	m2	Male	Nomascus	gabriellae
354	NHM 27.12.1.1	m3	Male	Nomascus	gabriellae
355	NHM 14.12.8.1	m3	Male	Hylobates	lar
356	NHM 28.7.1.1	m1	Female	Nomascus	leucogenys
357	NHM 28.7.1.1	m3	Female	Nomascus	leucogenys
358	NHM 1920.1.26.1	m1	Male	Symphalangus	syndactylus
359	NHM 1920.1.26.1	m2	Male	Symphalangus	syndactylus
360	NHM 1920.1.26.1	m3	Male	Symphalangus	syndactylus
361	USNM 083262	m1	Female	Hylobates	lar
362	USNM 083262	m2	Female	Hylobates	lar
363	USNM 083262	m3	Female	Hylobates	lar
364	USNM 083263	m1	Female	Hylobates	lar
365	USNM 083263	m2	Female	Hylobates	lar
366	USNM 083264	m2	Female	Hylobates	lar
367	USNM 083515	m3	Female	Hylobates	lar
368	USNM 111970	m2	Male	Hylobates	lar
369	USNM 111970	m3	Male	Hylobates	lar
370	USNM 111988	m2	Male	Hylobates	lar
371	USNM 111988	m3	Male	Hylobates	lar
372	USNM 111989	m1	Male	Hylobates	lar
373	USNM 111989	m2	Male	Hylobates	lar
374	USNM 111989	m3	Male	Hylobates	lar
375	USNM 111990	m1	Female	Hylobates	lar
376	USNM 112574	m2	Male	Hylobates	lar
377	USNM 113177	m1	Female	Hylobates	agilis
378	USNM 113177	m2	Female	Hylobates	agilis
379	USNM 114497	m1	Female	Symphalangus	syndactylus
380	USNM 114497	m2	Female	Symphalangus	syndactylus
381	USNM 114497	m3	Female	Symphalangus	syndactylus
382	USNM 115502	m3	Female	Hylobates	lar
383	USNM 123151	m2	Male	Hylobates	agilis
384	USNM 124232	m3	Male	Hylobates	lar
385	USNM 124292	m2	Male	Hylobates	lar
386	USNM 124292	m3	Male	Hylobates	lar
387	USNM 141160	m1	Male	Symphalangus	syndactylus
388	USNM 141160	m2	Male	Symphalangus	syndactylus
389	USNM 141160	m3	Male	Symphalangus	syndactylus
390	USNM 141163	m2	Male	Symphalangus	syndactylus
391	USNM 196781	m1	Male	Hylobates	muelleri
392	USNM 196781	m3	Male	Hylobates	muelleri
393	USNM 196783	m1	Male	Hylobates	muelleri
394	USNM 196783	m2	Male	Hylobates	muelleri
395	USNM 196783	m3	Male	Hylobates	muelleri
396	USNM 198268	m1	Female	Hylobates	muelleri

397	USNM 198268	m2	Female	Hylobates	muelleri
398	USNM 198268	m3	Female	Hylobates	muelleri
399	USNM 198271	m1	Male	Hylobates	muelleri
400	USNM 198271	m2	Male	Hylobates	muelleri
401	USNM 198272	m1	Male	Hylobates	muelleri
402	USNM 198272	m3	Male	Hylobates	muelleri
403	USNM 198842	m1	Female	Hylobates	muelleri
404	USNM 198842	m2	Female	Hylobates	muelleri
405	USNM 198843	m1	Female	Hylobates	muelleri
406	USNM 199194	m1	Unknown	Hylobates	muelleri
407	USNM 199194	m3	Unknown	Hylobates	muelleri
408	USNM 199196	m1	Male	Hylobates	muelleri
409	USNM 199196	m2	Male	Hylobates	muelleri
410	USNM 199196	m3	Male	Hylobates	muelleri
411	USNM 201556	m1	Female	Hylobates	pileatus
412	USNM 201556	m2	Female	Hylobates	pileatus
413	USNM 240490	m3	Female	Nomascus	leucogenys
414	USNM 241018	m1	Male	Hylobates	pileatus
415	USNM 241019	m1	Female	Hylobates	pileatus
416	USNM 241019	m2	Female	Hylobates	pileatus
417	USNM 241019	m3	Female	Hylobates	pileatus
418	USNM 253405	m1	Female	Hylobates	pileatus
419	USNM 253405	m2	Female	Hylobates	pileatus
420	USNM 257988	m2	Female	Hoolock	sp.
421	USNM 257988	m3	Female	Hoolock	sp.
422	USNM 257995	m1	Male	Nomascus	gabriellae
423	USNM 257995	m2	Male	Nomascus	gabriellae
424	USNM 257996	m1	Male	Nomascus	gabriellae
425	USNM 271331	m2	Male	Hylobates	pileatus
426	USNM 271331	m3	Male	Hylobates	pileatus
427	USNM 279146	m2	Female	Hoolock	leuconedys
428	USNM 296920	m1	Male	Hylobates	pileatus
429	USNM 296920	m2	Male	Hylobates	pileatus
430	USNM 296920	m3	Male	Hylobates	pileatus
431	USNM 296921	m1	Female	Nomascus	leucogenys
432	USNM 296922	m1	Female	Hylobates	lar
433	USNM 296922	m2	Female	Hylobates	lar
434	USNM 296922	m3	Female	Hylobates	lar
435	USNM 296923	m1	Male	Hylobates	lar
436	USNM 296923	m2	Male	Hylobates	lar
437	USNM 296923	m3	Male	Hylobates	lar
438	USNM 320786	m1	Male	Nomascus	concolor
439	USNM 320787	m1	Female	Nomascus	concolor
440	USNM 320787	m2	Female	Nomascus	concolor

441	USNM 321549	m1	Male	Hylobates	pileatus
442	USNM 321549	m2	Male	Hylobates	pileatus
443	USNM 364967	m1	Female	Symphalangus	syndactylus
444	USNM 395514	m2	Male	Symphalangus	syndactylus
445	USNM 395514	m3	Male	Symphalangus	syndactylus
446	USNM 464992	m1	Female	Nomascus	concolor
447	USNM 464992	m2	Female	Nomascus	concolor
448	USNM 464992	m3	Female	Nomascus	concolor
449	USNM 519573	m3	Female	Symphalangus	syndactylus
450	USNM 542282	m3	Male	Nomascus	concolor
451	AMNH 18534	m2	Unknown	Bunopithecus	sericus

Subspecies

-

-

-

_

SUMMARY:

Taxon	UM1	UM2	UM3
M1K12:3	1	1	1
Bunopithecus	-	-	-
Hylobates	65	98	69
Hoolock	41	51	31
Symphalangus	11	18	12
Nomascus	28	30	27

Total individuals:

129	Hylobates
77	Hoolock
32	Symphalangus
41	Nomascus

279 TOTAL

--

-

--

-

-

--

-

--

-

-

--

-

--

-

-
--

-

--

-

--

-

--

-

- -
 - -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

furvogaster furvogaster

furvogaster

- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

yunnanensis

yunnanensis _ jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis -_ _ _ jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis _ _ _ _ _ _ _ _ _ _ _ _ _ _

--

-

--

-

--

-

--

-

-_ _ _ _ _ _ _ _ -_ -_ _ -_ -_ _ _ _ _ _

--------_ ------_ ----------------------_ ---

--

-

--

-

--

-

--

-

--

-

--

-

--

-

--

-

--

-

--

-

-

- -
- -
- -
- -
- -
- -
- -
- -
- -
- _
- -
- -
- -
- -
- -
- -
- -
- -
- -

furvogaster furvogaster furvogaster

- -
- -
- -
- _
- _
- _
- -
- -
- -
- -
- -
- -
- -
- -

yunnanensis yunnanensis -jingdongensis jingdongensis jingdongensis jingdongensis -_ jingdongensis jingdongensis jingdongensis jingdongensis jingdongensis _ _ _ _ _ _ _ -_ _ _ -_ --

--

-

--

-

-

--

-

--

-

-

-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
 -	

LM1	LM2
1	1
-	1
62	100
30	44
10	22
19	21