64 research outputs found

    Numerical Study on the Influence of Different Waving Bottom Form on the Fluid Surface Wave

    Get PDF
    Abstract: In the present study, the effect of waving bottom on the surface wave is studied. Basing on the fundamental equations of potential flow theory and boundary conditions, using the multiple scales perturbation method to derive the first-order and the second-order approximate equation which the fluid surface waves satisfied in the presence of waving bottom. Under the second-order approximation, the fluid surface waveform in first-order approximate equation is numerically simulated with MATLAB in the presence of different waving bottom form. The results show that: the fluid surface waveform is composed of a harmonic wave which has the same frequency with waving bottom and a pair of KdV solitary waves that spread to both the right and the left side when the waving bottom wave is a harmonic wave; and when the waving bottom is a solitary wave packet, it consists of a solitary wave which is closely related to the specific form of waving bottom and a couple of KdV solitary waves. With the development of time, three waves in fluid surface do not affect each other and they propagate independently. Thus it can be seen the waving bottom is effective for maintaining surface wave energy balance income and expenditure in the spreading process

    Durvalumab Plus Carboplatin/Paclitaxel Followed by Maintenance Durvalumab With or Without Olaparib as First-Line Treatment for Advanced Endometrial Cancer: The Phase III DUO-E Trial

    Full text link
    PURPOSE Immunotherapy and chemotherapy combinations have shown activity in endometrial cancer, with greater benefit in mismatch repair (MMR)-deficient (dMMR) than MMR-proficient (pMMR) disease. Adding a poly(ADP-ribose) polymerase inhibitor may improve outcomes, especially in pMMR disease. METHODS This phase III, global, double-blind, placebo-controlled trial randomly assigned eligible patients with newly diagnosed advanced or recurrent endometrial cancer 1:1:1 to: carboplatin/paclitaxel plus durvalumab placebo followed by placebo maintenance (control arm); carboplatin/paclitaxel plus durvalumab followed by maintenance durvalumab plus olaparib placebo (durvalumab arm); or carboplatin/paclitaxel plus durvalumab followed by maintenance durvalumab plus olaparib (durvalumab + olaparib arm). The primary end points were progression-free survival (PFS) in the durvalumab arm versus control and the durvalumab + olaparib arm versus control. RESULTS Seven hundred eighteen patients were randomly assigned. In the intention-to-treat population, statistically significant PFS benefit was observed in the durvalumab (hazard ratio [HR], 0.71 [95% CI, 0.57 to 0.89]; P = .003) and durvalumab + olaparib arms (HR, 0.55 [95% CI, 0.43 to 0.69]; P < .0001) versus control. Prespecified, exploratory subgroup analyses showed PFS benefit in dMMR (HR [durvalumab v control], 0.42 [95% CI, 0.22 to 0.80]; HR [durvalumab + olaparib v control], 0.41 [95% CI, 0.21 to 0.75]) and pMMR subgroups (HR [durvalumab v control], 0.77 [95% CI, 0.60 to 0.97]; HR [durvalumab + olaparib v control] 0.57; [95% CI, 0.44 to 0.73]); and in PD-L1-positive subgroups (HR [durvalumab v control], 0.63 [95% CI, 0.48 to 0.83]; HR [durvalumab + olaparib v control], 0.42 [95% CI, 0.31 to 0.57]). Interim overall survival results (maturity approximately 28%) were supportive of the primary outcomes (durvalumab v control: HR, 0.77 [95% CI, 0.56 to 1.07]; P = .120; durvalumab + olaparib v control: HR, 0.59 [95% CI, 0.42 to 0.83]; P = .003). The safety profiles of the experimental arms were generally consistent with individual agents. CONCLUSION Carboplatin/paclitaxel plus durvalumab followed by maintenance durvalumab with or without olaparib demonstrated a statistically significant and clinically meaningful PFS benefit in patients with advanced or recurrent endometrial cancer

    Fan Fault Diagnosis Based on Wavelet Packet and Sample Entropy

    No full text
    To accurately diagnose the mechanical failure of the fan, two diagnostic methods based on the wavelet packet energy feature and sample entropy feature are proposed. Vibration signals acquisition of 13 kinds of running states are achieved on the 4-73 No.8D centrifugal fan test bench. The wavelet packet energy feature vector of each vibration signal is rapidly extracted through the wavelet packet denoising, decomposition and reconstruction. The vibration signal wavelet packet energy feature vector of the five measuring points in the same instantaneous running state are fused into the fan fault feature vector. Finally, the fault diagnosis of the fan is achieved by using improved SVM (Support Vector Machine) classifier, and the accuracy rate is 94.6%. A new fan fault feature vector is put forward, which is the integration of the vibration signal sample entropy of the five measuring points in the same instantaneous running state, and then the fault diagnosis of the fan is achieved by using improved BP (Back Propagation) neural network, and the accuracy rate is 99.23%. The diagnostic results show that these two methods are able to effectively diagnose the category, severity and site of the fan mechanical failures, and suitable for online diagnosis. DOI: http://dx.doi.org/10.11591/telkomnika.v11i6.272

    STUDY ON THE LOAD ASSESSMENT METHOD AND DEVELOPMENT OF THE LOAD ASSESSMENT PROGRAM FOR THE TAIL SUPPORT DEVICE OF THE FL-17 WIND TUNNEL

    No full text
    The loads applied on the driving hydraulic cylinders, attack angle joint bearings and sideslip angle joint bearings in the tail support device of the FL-17 wind tunnel were deduced using a coordinate transformation approach. The load vectors applied on these components were obtained in closed form. A load assessment program with graphical user interface was developed using MATLAB. The safety coefficients of the driving hydraulic cylinders and the bearings can be readily calculated by importing the structural parameters and inputting the load parameters. The shortages of high computational cost and low assessment efficiency of the multi body dynamics simulation is overcame. Taking the example of a wind tunnel test, the developed method and program is applied to verify the strength of the tail support device and the results indicate that the tail support device is sufficient to perform the wind tunnel test. The present work provides a method with high accuracy and efficiency for the preparation and argument for wind tunnel tests and has significant practical value

    A Research on Cross-Regional Debris Flow Susceptibility Mapping Based on Transfer Learning

    No full text
    Debris flow susceptibility mapping (DFSM), which has proven to be one of the most effective tools for risk management, faces a variety of problems. To realize the rational use of debris flow sample resources and improve the modeling efficiency, a unified model based on transfer learning was established for cross-regional DFSM. First, samples with 10 features collected from two debris flow-prone areas were separately used to perform factor prediction ability analysis (FPAA) based on the information gain ratio (IGR) method and then develop traditional machine learning models based on random forests (RF). Secondly, two feature matrices representing different areas were projected into a common latent feature space to obtain two new feature matrices. Then, the samples with new features were used together for FPAA and developing a unified machine learning model. Finally, the performance of the models was obtained and compared based on the area under curves (AUC) and some statistical results. All the conditioning factors played different roles in debris flow prediction in the two study areas, based on which two traditional models and a unified model were established. The unified model based on feature transferring realized efficient cross-regional modeling, solved the unconvincing problem of limited sample modeling, and enabled more accurate identification of some debris flow samples

    A Research on Cross-Regional Debris Flow Susceptibility Mapping Based on Transfer Learning

    No full text
    Debris flow susceptibility mapping (DFSM), which has proven to be one of the most effective tools for risk management, faces a variety of problems. To realize the rational use of debris flow sample resources and improve the modeling efficiency, a unified model based on transfer learning was established for cross-regional DFSM. First, samples with 10 features collected from two debris flow-prone areas were separately used to perform factor prediction ability analysis (FPAA) based on the information gain ratio (IGR) method and then develop traditional machine learning models based on random forests (RF). Secondly, two feature matrices representing different areas were projected into a common latent feature space to obtain two new feature matrices. Then, the samples with new features were used together for FPAA and developing a unified machine learning model. Finally, the performance of the models was obtained and compared based on the area under curves (AUC) and some statistical results. All the conditioning factors played different roles in debris flow prediction in the two study areas, based on which two traditional models and a unified model were established. The unified model based on feature transferring realized efficient cross-regional modeling, solved the unconvincing problem of limited sample modeling, and enabled more accurate identification of some debris flow samples
    corecore