56 research outputs found

    Variation of the stapes and its surrounding anatomical structures based on micro-computed tomography

    Get PDF
    Background: Stapedotomy is the most efficient treatment for otosclerosis. The anatomical structure of the operation area is complex, but it has a great impact on the postoperative effect. We measure the anatomical parameters of the stapes and its surrounding structures to provide an anatomical reference for stapes surgery in otosclerosis. Materials and methods: Fifteen adult cadaver heads (30 samples) were scanned using micro-CT. The stapes, facial nerve and external auditory canal were reconstructed by image processing. The stapes parameters and relationships between the stapes and surrounding structures were measured using a three-dimensional reconstruction model. Results: The length, width and thickness of the stapes footplate were 2.93 ± 0.17 mm, 1.46 ± 0.08 mm and 0.30 ± 0.11 mm, respectively. The distance between the stapes footplate and long process of the incus was 3.79±0.39 mm. The angle of the incudostapedial joint was 88.29 ± 11.58°. The distance from the center of the stapes footplate to the facial canal was 1.60 ± 0.34 mm. In simulated stapes surgery, the minimum depth of the external auditory canal to be removed was 2.17 ± 0.91 mm, and no significant difference was found between the left and right sides and between men and women (P > 0.05). Conclusions: A three-dimensional model of the stapes bone and its surrounding anatomical structures was established based on Micro-CT imaging. Anatomical parameters of the stapes bone and its surrounding structures were measured using the model. In stapedotomy, the implanted piston diameter should be around 0.6mm, with a length of approximately 4.6mm. Care should be taken to protect the facial nerve canal during the surgery. These data provide reference for otologists

    Concept Design of the “Guanlan” Science Mission: China’s Novel Contribution to Space Oceanography

    Get PDF
    Among the various challenges that spaceborne radar observations of the ocean face, the following two issues are probably of a higher priority: inadequate dynamic resolution, and ineffective vertical penetration. It is therefore the vision of the National Laboratory for Marine Science and Technology of China that two highly anticipated breakthroughs in the coming decade are likely to be associated with radar interferometry and ocean lidar (OL) technology, which are expected to make a substantial contribution to a submesoscale-resolving and depth-resolving observation of the ocean. As an expanded follow-up of SWOT and an oceanic counterpart of CALIPSO, the planned “Guanlan” science mission comprises a dual-frequency (Ku and Ka) interferometric altimetry (IA), and a near-nadir pointing OL. Such an unprecedented combination of sensor systems has at least three prominent advantages. (i) The dual-frequency IA ensures a wider swath and a shorter repeat cycle which leads to a significantly improved temporal and spatial resolution up to days and kilometers. (ii) The first spaceborne active OL ensures a deeper penetration depth and an all-time detection which leads to a layered characterization of the optical properties of the subsurface ocean, while also serving as a near-nadir altimeter measuring vertical velocities associated with the divergence, and convergence of geostrophic eddy motions in the mixed layer. (iii) The simultaneous functioning of the IA/OL system allows for an enhanced correction of the contamination effects of the atmosphere and the air-sea interface, which in turn considerably reduces the error budgets of the two sensors. As a result, the integrated IA/OL payload is expected to resolve the ocean variability at submeso and sub-week scales with a centimeter-level accuracy, while also partially revealing marine life systems and ecosystems with a 10-m vertical interval in the euphotic layer, moving a significant step forward toward a “transparent ocean” down to the vicinity of the thermocline, both dynamically and bio-optically

    Environmental Effects on Vertebrate Species Richness: Testing the Energy, Environmental Stability and Habitat Heterogeneity Hypotheses

    Get PDF
    Background: Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings: A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 1006100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6 % of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1 % of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3 % of the VSR variation. Significantly positive correlations were detected among VSR, annua

    Do Rapoport's Rule, Mid-Domain Effect or Environmental Factors Predict Latitudinal Range Size Patterns of Terrestrial Mammals in China?

    Get PDF
    BACKGROUND: Explaining species range size pattern is a central issue in biogeography and macroecology. Although several hypotheses have been proposed, the causes and processes underlying range size patterns are still not clearly understood. In this study, we documented the latitudinal mean range size patterns of terrestrial mammals in China, and evaluated whether that pattern conformed to the predictions of the Rapoport's rule several analytical methods. We also assessed the influence of the mid-domain effect (MDE) and environmental factors on the documented range size gradient. METHODOLOGY/PRINCIPAL FINDINGS: Distributions of 515 terrestrial mammals and data on nine environmental variables were compiled. We calculated mean range size of the species in each 5° latitudinal band, and created a range size map on a 100 km×100 km quadrat system. We evaluated Rapoport's rule according to Steven's, mid-point, Pagel's and cross-species methods. The effect of the MDE was tested based on a Monte Carlo simulation and linear regression. We used stepwise generalized linear models and correlation analyses to detect the impacts of mean climate condition, climate variability, ambient energy and topography on range size. The results of the Steven's, Pagel's and cross-species methods supported Rapoport's rule, whereas the mid-point method resulted in a hump-shaped pattern. Our range size map showed that larger mean latitudinal extents emerged in the mid-latitudes. We found that the MDE explained 80.2% of the range size variation, whereas, environmental factors accounted for <30% of that variation. CONCLUSIONS/SIGNIFICANCE: Latitudinal range size pattern of terrestrial mammals in China supported Rapoport's rule, though the extent of that support was strongly influenced by methodology. The critical factor underlying the observed gradient was the MDE, and the effects of climate, energy and topography were limited. The mean climate condition hypothesis, climate variability hypothesis, ambient energy hypotheses and topographical heterogeneity hypotheses were not supported

    Appendix A. Jack-knife analyses of importance of eco-geographic predictors for ungulates on the Tibetan Plateau.

    No full text
    Jack-knife analyses of importance of eco-geographic predictors for ungulates on the Tibetan Plateau

    Lidar Concept of “Guanlan” Mission for Space Oceanography

    Get PDF
    Among the various challenges in spaceborne radar observation of the ocean, the following two issues are probably of a higher priority: inadequate dynamic resolution, and ineffective vertical penetration. Two highly anticipated breakthroughs in the coming decade are likely to be associated with radar interferometry and ocean lidar technology, which are expected to make a substantial contribution to a sub-mesoscale-resolving and depth-resolving observation of the ocean. The planned “Guanlan” science mission comprises a dual-frequency (Ku and Ka) interferometric altimetry (IA) and a near-nadir pointing ocean lidar (OL). The spaceborne active OL will ensure a deeper penetration depth and an all-time detection which leads to a layered characterization of the optical properties of the subsurface ocean. The simultaneous functioning of the OL and a dual-frequency (Ku and Ka) interferometric altimetry system will allow an enhanced understanding of contributions of the atmosphere and the air-sea interface which in turn considerably reduce the error budgets of the two sensors. The OL payload is expected to partially reveal the marine food chain and ecosystem with 10-m vertical interval in the euphotic layer, moving a significant step down to the oceanic mixed layer both dynamically and bio-optically

    A Solid Model Based Virtual Hairy Brush

    No full text
    We present the detailed modeling of the hairy brush used typically in Chinese calligraphy. The complex model, which includes also a model for the ink and the paper, covers the various stages of the brush going through a calligraphy process. The model relies on the concept of writing primitives, which are the smallest units of hair clusters, to reduce the load on the simulation. Each such primitive is constructed through the general sweeping operation in CAD and described by a NURBS surface. The writing primitives dynamically adjust themselves during the virtual writing process, leaving an imprint on the virtual paper as they move. The behavior of the brush is an aggregation of the behavior of all the writing primitives. A software system based on the model has been built and tested, which can be used as a stand-alone system for creating calligraphic artwork in real time or integrated as a special-effect feature into a design software program. Samples of imitation artwork from using the system were obtained and found to be nearly indistinguishable from the real artwork
    • …
    corecore