43 research outputs found

    Enhanced Fireworks Algorithm-Auto Disturbance Rejection Control Algorithm for Robot Fish Path Tracking

    Get PDF
    The robot fish is affected by many unknown internal and external interference factors when it performs path tracking in unknown waters. It was proposed that a path tracking method based on the EFWA-ADRC (enhanced fireworks algorithmauto disturbance rejection control) to obtain high-quality tracking effect. ADRC has strong adaptability and robustness. It is an effective method to solve the control problems of nonlinearity, uncertainty, strong interference, strong coupling and large time lag. For the optimization of parameters in ADRC, the enhanced fireworks algorithm (EFWA) is used for online adjustment. It is to improve the anti-interference of the robot fish in the path tracking process. The multi-joint bionic robot fish was taken as the research object in the paper. It was established a path tracking error model in the Serret-Frenet coordinate system combining the mathematical model of robotic fish. It was focused on the forward speed and steering speed control rate. It was constructed that the EFWA-ADRC based path tracking system. Finally, the simulation and experimental results show that the control method based on EFWAADRC and conventional ADRC makes the robotic fish track the given path at 2:8s and 3:3s respectively, and the tracking error is kept within plus or minus 0:09m and 0:1m respectively. The new control method tracking steady-state error was reduces by 10% compared with the conventional ADRC. It was proved that the proposed EFWA-ADRC controller has better control effect on the controlled system, which is subject to strong interference

    A New Hybrid Method in Global Dynamic Path Planning of Mobile Robot

    Get PDF
    Path planning and real-time obstacle avoidance is the key technologies of mobile robot intelligence. But the efficiency of the global path planning is not very high. It is not easy to avoid obstacles in real time. Aiming at these shortcomings it is proposed that a global dynamic path planning method based on improved A* algorithm and dynamic window method. At first the improved A* algorithm is put forward based on the traditional A* algorithm in the paper. Its optimized heuristic search function is designed. They can be eliminated that the redundant path points and unnecessary turning points. Simulation experiment 1 results show that the planned path length is reduced greatly. And the path transition points are less, too. And then it is focused on the global dynamic path planning of fusion improved A* Algorithm and Dynamic Window Method. The evaluation function is constructed taking into account the global optimal path. The real time dynamic path is planning. On the basis of ensuring the optimal global optimization of the planning path, it is improved that the smoothness of the planning path and the local real-time obstacle avoidance ability. The simulation experiments results show that the fusion algorithm is not only the shorter length, but also the smoother path compared the traditional path planning algorithms with the fusion algorithm in the paper. It is more fit to the dynamics of the robot control. And when a dynamic obstacle is added, the new path can be gained. The barrier can be bypass and the robot is to reach the target point. It can be guaranteed the global optimality of the path. Finally the Turtlebot mobile robot was used to experiment. The experimental results show that the global optimality of the proposed path can be guaranteed by the fusion algorithm. And the planned global path is smoother. When the random dynamic obstacle occurs in the experiment, the robot can be real-time dynamic obstacle avoidance. It can re-plan the path. It can bypass the random obstacle to reach the original target point. The outputting control parameters are more conducive to the robot’s automatic control. The fusion method is used for global dynamic path planning of mobile robots in this paper. In summary the experimental results show that the method is good efficiency and real-time performance. It has great reference value for the dynamic path planning application of mobile robot

    Photolithographic Approaches for Fabricating Highly Ordered Nanopatterned Arrays

    Get PDF
    In this work, we report that large area metal nanowire and polymer nanotube arrays were successfully patterned by photolithographic approach using anodic aluminum oxide (AAO) templates. Nanowires were produced by electrochemical deposition, and nanotubes by solution-wetting. The highly ordered patterns of nanowire and nanotube arrays were observed using scanning electron microscopy (SEM) and found to stand free on the substrate. The method is expected to play an important role in the application of microdevices in the future

    Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Get PDF
    Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition

    Multitarget Tracking Algorithm Based on Adaptive Network Graph Segmentation in the Presence of Measurement Origin Uncertainty

    No full text
    To deal with the problem of multitarget tracking with measurement origin uncertainty, the paper presents a multitarget tracking algorithm based on Adaptive Network Graph Segmentation (ANGS). The multitarget tracking is firstly formulated as an Integer Programming problem for finding the maximum a posterior probability in a cost flow network. Then, a network structure is partitioned using an Adaptive Spectral Clustering algorithm based on the Nyström Method. In order to obtain the global optimal solution, the parallel A* search algorithm is used to process each sub-network. Moreover, the trajectory set is extracted by the Track Mosaic technique and Rauch⁻Tung⁻Striebel (RTS) smoother. Finally, the simulation results achieved for different clutter intensity indicate that the proposed algorithm has better tracking accuracy and robustness compared with the A* search algorithm, the successive shortest-path (SSP) algorithm and the shortest path faster (SPFA) algorithm

    Research on Image Splicing and Fusion Processing Algorithm in Large Visual Field

    No full text
    To obtain wide area and a large field of view image, splicing and fusion algorithm is presented. Single image is preprocessed by utilizing rough matching algorithm, which can narrow down the matching range to improve the speed and precision of image stitching and fusion, at the same time, Single image is preprocessed by filter processing algorithm, which will reduce interference noise, improve SNR and enhance the effective character information of image; the best matching position is found by using a combined splicing algorithm, which are ratio template matching algorithm and template matching algorithm, and the images are spliced at the best matching position; we take the neighborhood weighted average fusion algorithm to eliminate the distinct splicing trace. The captured images are processed by using correlation algorithm, a large field of view and high quality image is obtained. The experimental results verify the validity of the algorithm

    Pilot attention allocation model based on fuzzy theory

    Get PDF
    AbstractQuantitative research into a pilot’s attention allocation mechanism is required in the optimization design of an aircraft human–machine interface and system evaluation. After making a comprehensive consideration of several factors, including the importance of information, information detective efficiency and human errors, a pilot attention allocation model was built on the basis of hybrid entropy. In order to make a verification of the pilot attention allocation model, a simulation model of a head-up display (HUD) used to present flight indicators was developed. After setting the membership degrees of the importance for different indicators according to their priorities, the experiments on the key-press response and eye-movement tracking were designed and carried out under the cruise and hold modes. As the experiment results are in good agreement with the theoretical model, the effectiveness of the pilot attention allocation model based on fuzzy theory is confirmed

    Effects of Autophagy-related Genes and Signal Pathways on Occurrence and Development of Oral Tumors

    No full text
    Autophagy is a highly conservative cellular self-protective behavior dependent on lysosomes, and can be used as an important factor in promoting or preventing cancer, and its effect is related to the type and development of tumors. A full understanding of autophagy pathway is helpful to improve the diagnosis and treatment of tumors. Studies have shown that autophagy is closely related to the occurrence and development of oral tumors. Autophagy-related genes and signal pathways play a dual regulatory role on oral tumors. This article reviews the latest progress in the regulatory mechanism and therapeutic effect of autophagy on oral tumors
    corecore