2,235 research outputs found

    Chronic rhinosinusitis with nasal polyps in older adults : clinical presentation, pathophysiology, and comorbidity

    No full text
    Purpose of Review Chronic rhinosinusitis and nasal polyps (CRSwNP) is a common condition that significantly affects patients' life. This work aims to provide an up-to-date overview of CRSwNP in older adults, focusing on its aging-related clinical presentations, pathophysiology, and comorbidity associations including asthma. Recent Findings Recent large population-based studies using nasal endoscopy have shown that CRSwNP is a mostly late-onset disease. Age-related changes in physiologic functions, including nasal epithelial barrier dysfunction, may underlie the incidence and different clinical presentations of CRSwNP in older adults. However, there is still a paucity of evidence on the effect of aging on phenotypes and endotypes of CRSwNP. Meanwhile, late-onset asthma is a major comorbid condition in patients with CRSwNP; they frequently present with type 2 inflammatory signatures that are refractory to conventional treatments when they are comorbid. However, as they are more commonly non-atopic, causative factors other than classical atopic sensitization, such as Staphylococcus aureus specific IgE sensitization, are suggested to drive the type 2 inflammation. There are additional comorbidity associations in older patients with CRSwNP, including those with chronic otitis media and head and neck malignancy. Age is a major determinant for the incidence and clinical presentations of CRSwNP. Given the heterogeneity in phenotypes and endotypes, longitudinal investigations are warranted to elucidate the effects of aging on CRSwNP

    Cough hypersensitivity syndrome: A few more steps forward

    Get PDF
    © The Korean Academy of Asthma, Allergy and Clinical Immunology. Cough reflex is a vital protective mechanism against aspiration, but when dysregulated, it can become hypersensitive. In fact, chronic cough is a significant medical problem with a high degree of morbidity. Recently, a unifying paradigm of cough hypersensitivity syndrome has been proposed. It represents a clinical entity in which chronic cough is a major presenting problem, regardless of the underlying condition. Although it remains a theoretical construct, emerging evidence suggests that aberrant neurophysiology is the common etiology of this syndrome. Recent success in randomized clinical trials using a P2X3 receptor antagonist is the first major advance in the therapeutics of cough in the past 30 years; it at last provides a strategy for treating intractable cough as well as an invaluable tool for dissecting the mechanism underpinning cough hypersensitivity. Additionally, several cough measurement tools have been validated for use and will help assess the clinical relevance of cough in various underlying conditions. Along with this paradigm shift, our understanding of cough mechanisms has improved during the past decades, allowing us to continue to take more steps forward in the future

    Drug-induced cough

    Get PDF
    © 2020, Czech Academy of Sciences. Since the recognition of angiotensin-converting enzyme inhibitors (ACEIs)-induced cough, drug has been considered as a potential cause of chronic cough. This review presents recent knowledge on drug-induced coughs in patients with chronic cough. The focus is placed on ACEIs, for which there are a multitude of studies documenting their associations with cough. Additional drugs are discussed for which there are reports of cough as a side effect of treatment, and the potential mechanisms of these effects are discussed

    3′-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli

    Get PDF
    3'-Untranslated region (3'UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3'UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3'UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3'UTR. In summary, 3'UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells.1184Ysciescopu

    Objective cough frequency monitoring in real-world practice

    Get PDF

    Experimental Study on Coordinated Heading Control of Four Vessels Moored Side by Side

    Get PDF
    A floating type liquefied natural gas (LNG) bunkering terminal has been under development in Korea since 2014; the terminal is designed to receive LNG from an LNG carrier (LNGC) and transfer it to two other LNG bunkering shuttles (LNGBS) simultaneously. The operational feasibility of the LNG loading and unloading processes has been confirmed. When four vessels are moored side by side with mooring ropes and fenders, their positions must be maintained within the designed allowable criteria. In addition, the floating bunkering terminal (FLBT) has its own mooring system, an internal turret with catenary mooring lines and stern tunnel thrusters to maintain its own position and control the vessel heading. In this study, we investigated the operational feasibility of the FLBT during the LNG loading and unloading operations with four vessel mooring configurations and heading controls. A series of model tests was done in the ocean engineering basin of the Korea Research Institute of Ships and Ocean engineering. The motion responses of the four vessels were determined using an optical measurement system, and the tensile loads on ship-to-ship mooring ropes and the compressive loads on ship-to-ship fenders were measured using one-axis load cells. A white noise test was done and the results were compared with the numerical results for the purpose of validation. Then, four combined environmental conditions were presented both without heading control and with several heading control cases. Finally, we determined the available safe bunkering heading ranges taking into account the tensile loads on the mooring ropes

    Point Mutation of Hoxd12 in Mice

    Get PDF
    Purpose: Genes of the HoxD cluster play a major role in vertebrate limb development, and changes that modify the Hoxd12 locus affect other genes also, suggesting that HoxD function is coordinated by a control mechanism involving multiple genes during limb morphogenesis. In this study, mutant phenotypes were produced by treatment of mice with chemical mutagen, N-ethyl-N-nitrosourea (ENU). We analyzed mutant mice exhibiting the specific microdactyly phenotype and examined the genes affected. Materials and Methods: We focused on phenotype characteristics including size, bone formation, and digit morphology of ENU-induced microdactyly mice. The expressions of several molecules were analyzed by genome-wide screening and quantitative real-time PCR to define the affected genes. Results: We report on limb phenotypes of an ENU-induced A-to-C mutation in the Hoxd12 gene, resulting in alanine-to-serine conversion. Microdactyly mice exhibited growth defects in the zeugopod and autopod, shortening of digits, a missing tip of digit I, limb growth affected, and dramatic increases in the expressions of Fgf4 and Lmx1b. However, the expression level of Shh was not changed Hoxd12 point mutated mice. Conclusion: These results suggest that point mutation rather than the entire deletion of Hoxd12, such as in knockout and transgenic mice, causes the abnormal limb phenotype in microdactyly mice. The precise nature of the spectrum of differences requires further investigation.link_to_subscribed_fulltex

    Query-Efficient Black-Box Red Teaming via Bayesian Optimization

    Full text link
    The deployment of large-scale generative models is often restricted by their potential risk of causing harm to users in unpredictable ways. We focus on the problem of black-box red teaming, where a red team generates test cases and interacts with the victim model to discover a diverse set of failures with limited query access. Existing red teaming methods construct test cases based on human supervision or language model (LM) and query all test cases in a brute-force manner without incorporating any information from past evaluations, resulting in a prohibitively large number of queries. To this end, we propose Bayesian red teaming (BRT), novel query-efficient black-box red teaming methods based on Bayesian optimization, which iteratively identify diverse positive test cases leading to model failures by utilizing the pre-defined user input pool and the past evaluations. Experimental results on various user input pools demonstrate that our method consistently finds a significantly larger number of diverse positive test cases under the limited query budget than the baseline methods. The source code is available at https://github.com/snu-mllab/Bayesian-Red-Teaming.Comment: ACL 2023 Long Paper - Main Conferenc

    Time Is MattEr: Temporal Self-supervision for Video Transformers

    Full text link
    Understanding temporal dynamics of video is an essential aspect of learning better video representations. Recently, transformer-based architectural designs have been extensively explored for video tasks due to their capability to capture long-term dependency of input sequences. However, we found that these Video Transformers are still biased to learn spatial dynamics rather than temporal ones, and debiasing the spurious correlation is critical for their performance. Based on the observations, we design simple yet effective self-supervised tasks for video models to learn temporal dynamics better. Specifically, for debiasing the spatial bias, our method learns the temporal order of video frames as extra self-supervision and enforces the randomly shuffled frames to have low-confidence outputs. Also, our method learns the temporal flow direction of video tokens among consecutive frames for enhancing the correlation toward temporal dynamics. Under various video action recognition tasks, we demonstrate the effectiveness of our method and its compatibility with state-of-the-art Video Transformers.Comment: Accepted to ICML 2022. Code is available at https://github.com/alinlab/temporal-selfsupervisio
    corecore