78 research outputs found

    Multidimensional Resource Fragmentation-Aware Virtual Network Embedding in MEC Systems Interconnected by Metro Optical Networks

    Full text link
    The increasing demand for diverse emerging applications has resulted in the interconnection of multi-access edge computing (MEC) systems via metro optical networks. To cater to these diverse applications, network slicing has become a popular tool for creating specialized virtual networks. However, resource fragmentation caused by uneven utilization of multidimensional resources can lead to reduced utilization of limited edge resources. To tackle this issue, this paper focuses on addressing the multidimensional resource fragmentation problem in virtual network embedding (VNE) in MEC systems with the aim of maximizing the profit of an infrastructure provider (InP). The VNE problem in MEC systems is transformed into a bilevel optimization problem, taking into account the interdependence between virtual node embedding (VNoE) and virtual link embedding (VLiE). To solve this problem, we propose a nested bilevel optimization approach named BiVNE. The VNoE is solved using the ant colony system (ACS) in the upper level, while the VLiE is solved using a combination of a shortest path algorithm and an exact-fit spectrum slot allocation method in the lower level. Evaluation results show that the BiVNE algorithm can effectively enhance the profit of the InP by increasing the acceptance ratio and avoiding resource fragmentation simultaneously

    A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Get PDF
    BACKGROUND: The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. PRESENTATION OF THE HYPOTHESIS: Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 Ă— anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. TESTING THE HYPOTHESIS: Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 Ă— anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 Ă— anti-C3d)-Fc lysis of HIV compared to untreated virus. IMPLICATIONS OF THE HYPOTHESIS: The targeted complement activator, (anti-gp120 Ă— anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells

    Effects of selected socio-demographic characteristics on nutrition knowledge and eating behavior of elementary students in two provinces in China

    Get PDF
    Abstract Background National and international child health surveys have indicated an increase in childhood obesity in China. The increase has been attributed to a rising standard of living, increasing availability of unhealthy foods, and a lack of knowledge about healthy diet. The objective of this study was to assess the effect of selected socio-demographic characteristics on the BMI, nutrition knowledge, and eating behavior of elementary school children. Methods Multistage stratified cluster sampling was used. Information on demographics, nutrition knowledge, and eating behavior was gathered by means of questionnaires. The schools’ doctors provided the height and weight data. The study was set in one economically advantaged and one economically disadvantaged province in China. The participants were Grade 3 students, ages 8–10 years (N = 3922). Results A cluster analysis identified four socio-demographic variables distinguished by parental education and family living arrangement. A one-way ANOVA compared differences among the clusters in BMI, child nutrition knowledge, and child eating behavior. Students in the cluster with lowest parent education level had the lowest nutrition knowledge scores and eating behavior scores. There was no significant benefit from college education versus high school education of parents in the other three clusters. BMI was not affected by parent education level. Conclusion The nutrition status of elementary school age children will benefit most by increasing the general level of education for those adults who are presently least educated

    Subdiffusive Source Sensing by a Regional Detection Method

    No full text
    Motivated by the fact that the danger may increase if the source of pollution problem remains unknown, in this paper, we study the source sensing problem for subdiffusion processes governed by time fractional diffusion systems based on a limited number of sensor measurements. For this, we first give some preliminary notions such as source, detection and regional spy sensors, etc. Secondly, we investigate the characterizations of regional strategic sensors and regional spy sensors. A regional detection approach on how to solve the source sensing problem of the considered system is then presented by using the Hilbert uniqueness method (HUM). This is to identify the unknown source only in a subregion of the whole domain, which is easier to be implemented and could save a lot of energy resources. Numerical examples are finally included to test our results

    Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

    No full text
    Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of sparse representation have reduced expressional accuracy; this is due in part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new optimization model is constructed with the semi-coupled dictionary learning and structural sparsity to predict the unknown high-resolution image from known images. Specifically, the intra-block correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction, and both are implemented with block sparse Bayesian learning. The detailed optimization steps are given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7 and Moderate Resolution Imaging Spectrometer (MODIS) satellites are put to fusion with root mean square errors to check the prediction accuracy. It can be concluded from the experiment that the proposed methods can produce higher quality than state-of-the-art methods

    Direct Adaptive Fuzzy Sliding Mode Control with Variable Universe Fuzzy Switching Term for a Class of MIMO Nonlinear Systems

    No full text
    Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear systems with uncertainties and external disturbances. The proposed control schemes consist of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable universe fuzzy switching control terms (in scheme two), and compensation control terms. The compensation control terms are used to relax the assumption on fuzzy approximation error. Based on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the global asymptotic stability of the closed-loop system can be guaranteed. The major contribution of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode control scheme facing model uncertainties and external disturbances. The derived schemes can effectively solve the chattering problem and the equivalent control calculation in that environment. Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the proposed control schemes

    Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model

    No full text
    Coastal cities are increasingly vulnerable to urban storm surge hazards and the secondary hazards they cause (e.g., coastal flooding). Accurate representation of the spatio-temporal process of hazard event development is essential for effective emergency response. However, current knowledge graph representations face the challenge of integrating multi-source information with various spatial and temporal scales. To address this challenge, we propose a new information model for storm surge hazard events, involving a two-step process. First, a hazard event ontology is designed to model the components and hierarchical relationships of hazard event information. Second, we utilize multi-scale time segment integer coding and geographical coordinate subdividing grid coding to create a spatio-temporal framework, for modeling spatio-temporal features and spatio-temporal relationships. Using the 2018 typhoon Mangkhut storm surge event in Shenzhen as a case study and the hazard event information model as a schema layer, a storm surge event knowledge graph is constructed, demonstrating the integration and formal representation of heterogeneous hazard event information and enabling the fast retrieval of disasters in a given spatial or temporal range
    • …
    corecore