83 research outputs found

    FloWaveNet : A Generative Flow for Raw Audio

    Full text link
    Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in its practical application due to its ancestral sampling scheme. The recently suggested Parallel WaveNet and ClariNet have achieved real-time audio synthesis capability by incorporating inverse autoregressive flow for parallel sampling. However, these approaches require a two-stage training pipeline with a well-trained teacher network and can only produce natural sound by using probability distillation along with auxiliary loss terms. We propose FloWaveNet, a flow-based generative model for raw audio synthesis. FloWaveNet requires only a single-stage training procedure and a single maximum likelihood loss, without any additional auxiliary terms, and it is inherently parallel due to the characteristics of generative flow. The model can efficiently sample raw audio in real-time, with clarity comparable to previous two-stage parallel models. The code and samples for all models, including our FloWaveNet, are publicly available.Comment: 9 pages, ICML'201

    Security Clustering: A Network-wide Secure Computing Mechanism in Pervasive Computing

    Get PDF
    Abstract. In this paper, we introduce a new security paradigm, called security clustering, for pervasive computing environment that enables network-wide defend against increasing evolutionary attacks on the heterogeneous network and hosts. Security clustering make use of dynamic security context exchange between cluster members and distributed information sharing to achieve scalable and efficient cooperation

    Gypsum-Dependent Effect of NaCl on Strength Enhancement of CaO-Activated Slag Binders

    Get PDF
    This study explores the combined effect of NaCl and gypsum on the strength of the CaO-activated ground-granulated blast furnace slag (GGBFS) binder system. In the CaO-activated GGBFS system, the incorporation of NaCl without gypsum did not improve the strength of the system. However, with the presence of gypsum, the use of NaCl yielded significantly greater strength than the use of either gypsum or NaCl alone. The presence of NaCl largely increases the solubility of gypsum in a solution, leading to a higher concentration of sulfate ions, which is essential for generating more and faster formations of ettringite in a fresh mixture of paste. The significant strength enhancement of gypsum was likely due to the accelerated and increased formation of ettringite, accompanied by more efficient filling of pores in the system

    ExerLink: Enabling Pervasive Social Exergames with Heterogeneous Exercise Devices

    Get PDF
    We envision that diverse social exercising games, or exergames, will emerge, featuring much richer interactivity with immersive game play experiences. Further, the recent advances of mobile devices and wireless networking will make such social engagement more pervasive - people carry portable exergame devices (e.g., jump ropes) and interact with remote users anytime, anywhere. Towards this goal, we explore the potential of using heterogeneous exercise devices as game controllers for a multi-player social exergame; e.g., playing a boat paddling game with two remote exercisers (one with a jump rope, and the other with a treadmill). In this paper, we propose a novel platform called ExerLink that converts exercise intensity to game inputs and intelligently balances intensity/delay variations for fair game play experiences. We report the design considerations and guidelines obtained from the design and development processes of game controllers. We validate the efficacy of game controllers and demonstrate the feasibility of social exergames with heterogeneous exercise devices via extensive human subject studies.

    Macrophage Migration Inhibitory Factor as a Chaperone Inhibiting Accumulation of Misfolded SOD1

    Get PDF
    SummaryMutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by loss of motor neurons and accompanied by accumulation of misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and the endoplasmic reticulum (ER). Using inhibition of misfolded SOD1 deposition onto mitochondria as an assay, a chaperone activity abundant in nonneuronal tissues is now purified and identified to be the multifunctional macrophage migration inhibitory factor (MIF), whose activities include an ATP-independent protein folding chaperone. Purified MIF is shown to directly inhibit mutant SOD1 misfolding. Elevating MIF in neuronal cells suppresses accumulation of misfolded SOD1 and its association with mitochondria and the ER and extends survival of mutant SOD1-expressing motor neurons. Accumulated MIF protein is identified to be low in motor neurons, implicating correspondingly low chaperone activity as a component of vulnerability to mutant SOD1 misfolding and supporting therapies to enhance intracellular MIF chaperone activity

    Emergence of liquid following laser melting of gold thin films

    Get PDF
    X-ray structural science is undergoing a revolution driven by the emergence of X-ray Free-electron Laser (XFEL) facilities. The structures of crystalline solids can now be studied on the picosecond time scale relevant to phonons, atomic vibrations which travel at acoustic velocities. In the work presented here, X-ray diffuse scattering is employed to characterize the time dependence of the liquid phase emerging from femtosecond laser-induced melting of polycrystalline gold thin films using an XFEL. In a previous analysis of Bragg peak profiles, we showed the supersonic disappearance of the solid phase and presented a model of pumped hot electrons carrying energy from the gold surface to scatter at internal grain boundaries. This generates melt fronts propagating relatively slowly into the crystal grains. By conversion of diffuse scattering to a partial X-ray pair distribution function, we demonstrate that it has the characteristic shape obtained by Fourier transformation of the measured F(Q). The diffuse signal fraction increases with a characteristic rise-time of 13 ps, roughly independent of the incident pump fluence and consequent final liquid fraction. This suggests the role of further melt-front nucleation processes beyond grain boundaries

    Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency

    Get PDF
    BACKGROUND:Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease. METHODOLOGY AND PRINCIPAL FINDINGS:Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE:We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs
    corecore