6 research outputs found

    Study on the Stress Threshold of Preventing Interfacial Fatigue Debonding in Concrete Beams Strengthened with Externally-Bonded FRP Laminates

    No full text
    Externally-bonded FRP laminate is widely used in structural strengthening due to the many advantages of FRP materials. Further enhancement of the strengthening effect can be achieved by inducing prestress into the FRP laminate. However, FRP debonding is still a main issue of this strengthening method, especially the Intermediate Crack-induced debonding (IC debonding). To better understand the impact of FRP debonding on the strengthening effect, a series of parameter analyses were conducted in this study based on the fatigue life prediction model proposed by the authors. The proposed model involves the fatigue damage accumulation of components of the beam, the mutual interaction between each component, and the impact of FRP fatigue debonding. As a result, a stress threshold for preventing FRP fatigue debonding in strengthening the concrete beam was proposed, which aimed to avoid safety hazards caused by IC debonding in practical engineering

    Effect of Temperature on Material Properties of Carbon Fiber Reinforced Polymer (CFRP) Tendons: Experiments and Model Assessment

    No full text
    Material properties at elevated temperatures are important factors in the fire safety design and numerical analysis of concrete members strengthened with fiber reinforced polymer (FRP) composites. Most of the previous research mainly focused on tensile strength and elastic modulus in conventional steady state temperature tests. However, the transient state test method is more realistic for strengthening concrete structures. At the same time, the coefficient of thermal expansion of FRP composites is also one of the important factors affecting concrete members at elevated temperatures. This paper presents a detailed experimental investigation on the longitudinal thermal expansion deformation, and the mechanical properties of carbon FRP (CFRP) tendons with 8 mm diameter in the steady state and transient state. The results indicate that longitudinal deformation of CFRP tendons is negative at high temperature; in addition, the transient state test results of CFRP tendons are slightly higher than the steady state test results. The final part of this paper assesses the accuracy of different empirical models. Furthermore, a new equation calculating the properties of CFRP composites at elevated temperatures is presented with the numerical fitting technique, which is in good agreement with the experimental results

    Experimental Investigation of Fatigue Debonding Growth in FRP–Concrete Interface

    No full text
    An externally bonded fiber reinforced polymer (FRP) plate (or sheet) is now widely used in strengthening bending members due to its outstanding properties, such as a high strength to weight ratio, easy operating, corrosion and fatigue resistance. However, the concrete member strengthened by this technology may have a problem with the adhesion between FRP and concrete. This kind of debonding failure can be broadly classified into two modes: (a) plate end debonding at or near the plate end, and (b) intermediate crack-induced debonding (intermediate crack-induced (IC) debonding) near the loading point. The IC debonding, unlike the plate end debonding, still needs a large amount of investigation work, especially for the interface under fatigue load. In this paper, ten single shear pull-out tests were carried out under a static or fatigue load. Different load ranges and load levels were considered, and the debonding growth process was carefully recorded. The experimental results indicate that the load range is one of the main parameters, which determines the debonding growth rate. Moreover, the load level can also play an important role when loaded with the same load range. Finally, a new prediction model of the fatigue debonding growth rate was proposed, and has an excellent agreement with the experimental results

    Experimental Investigation on the Creep Property of Carbon Fiber Reinforced Polymer Tendons under High Stress Levels

    No full text
    Carbon fiber reinforced polymer (CFRP) tendons are generally used as prestressing members to take full advantage of their high strength. Their creep property is one of the key factors influencing the reliability and safety of the structures, especially under sustained high stress. In this study, using a new wedge-type anchorage system, experimental research was carried out on the creep behavior of CFRP tendons under high stress levels from 0.69 to 0.85 fu. All the tests lasted for a duration of 1000 h. It was found that the creep coefficient tends to increase with the stress level. Compared to their static properties, the residual strength of CFRP tendons after creep tests is 4.54% lower while the after-creep elastic modulus is 6.99% higher. Through data analysis, a semi-logarithm linear relationship between the creep coefficient and time was established, and the creep coefficients at 1 million hours were extrapolated

    Numerical and theoretical research on flexural behaviour of steel-precast UHPC composite beams

    Get PDF
    In order to promote the utilization of high strength materials and application of prefabricated structures, flexural behaviour of section steel-precast UHPC (Ultra-High performance concrete) slab composite beams prefabricated with bolt shear connectors are numerically simulated by the finite element (FE) software ABAQUS. The model is verified by three prefabricated steel-concrete composite beams tested. Numerical analysis results are in good accordance with experimental results. Furthermore, parametric studies are conducted to investigate the effects of strength of section steel and concrete of precast slab, thickness of section steel, width and height of precast concrete slab, diameters of steel bars and bolt shear connectors. The flexural behaviour of composite beams, in terms of bearing capacity, deflection, ductility and energy dissipation, are compared. The numerical results indicate that the improvement of strength of section steel results in a decrease of ductility, but a significant increase of the ultimate load and energy dissipation. Compared with composite beam made of section steel with thickness of 10 mm, the ultimate load of beams made of section steel with thickness of 14 and 18 mm improve by 29.0% and 58.8%, respectively, the ductility enhance by 2.8% and 8.3%, respectively, and the energy dissipation improve by 8.0% and 12.3%, respectively. With the increase of concrete strength, the ultimate load, deflection and energy dissipation gradually increase. The ductility of steel-UHPC composite beam is the highest, that of steel-HSC composite beam is the lowest. The effect of reinforcement ratio of concrete slab and diameter of shear bolts on the ultimate load of composite beam is limited. Simplified formulae for two different sectional types of proper-reinforced section steel-precast UHPC slab composite beams occurred bending failure are proposed, and the predicted results fit well with the simulated results. The results can be taken as a reference for the design and construction of section steel-precast UHPC slab composite beams
    corecore