62 research outputs found

    Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage.

    No full text
    Vibrio cholerae O1 isolates belonging to the Ogawa serotype, El Tor biotype, harbouring the classical CTX prophage were first isolated in Mozambique in 2004. Multilocus sequence typing (MLST) analysis using nine genetic loci showed that the Mozambique isolates have the same sequence type (ST) as O1 El Tor N16961, a representative of the current seventh cholera pandemic. Analysis of the CTX prophage in the Mozambique isolates indicated that there is one type of rstR in these isolates: the classical CTX prophage. It was also found that the ctxB-rstR-rstA-rstB-phs-cep fragment was PCR-amplified from these isolates, which indicates the presence of a tandem repeat of the classical CTX prophage in the genome of the Mozambique isolates. The possible origin of these isolates and the presence of the tandem repeat of the classical prophage in them implicate the presence of the classical CTX phage

    Cross-Protective Shigella Whole-Cell Vaccine With a Truncated O-Polysaccharide Chain

    Get PDF
    Shigella is a highly prevalent bacterium causing acute diarrhea and dysentery in developing countries. Shigella infections are treated with antibiotics but Shigellae are increasingly resistant to these drugs. Vaccination can be a countermeasure against emerging antibiotic-resistant shigellosis. Because of the structural variability in Shigellae O-antigen polysaccharides (Oag), cross-protective Shigella vaccines cannot be derived from single serotype-specific Oag. We created an attenuated Shigella flexneri 2a strain with one rather than multiple Oag units by disrupting the Oag polymerase gene (Δwzy), which broadened protective immunogenicity by exposing conserved surface proteins. Inactivated Δwzy mutant cells combined with Escherichia coli double mutant LT(R192G/L211A) as adjuvant, induced potent antibody responses to outer membrane protein PSSP-1, and type III secretion system proteins IpaB and IpaC. Intranasal immunization with the vaccine preparation elicited cross-protective immunity against S. flexneri 2a, S. flexneri 3a, S. flexneri 6, and Shigella sonnei in a mouse pneumonia model. Thus, S. flexneri 2a Δwzy represents a promising candidate strain for a universal Shigella vaccine

    Sublingual Immunization with a Live Attenuated Influenza A Virus Lacking the Nonstructural Protein 1 Induces Broad Protective Immunity in Mice

    Get PDF
    The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics

    Laboratory information management system for COVID-19 non-clinical efficacy trial data

    Get PDF
    Background : As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. Results : In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. Conclusions : This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.This research was supported by the National research foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020M3A9I2109027 and 2021M3H9A1030260)

    IgM specific to lipopolysaccharide of Vibrio cholerae is a surrogate antibody isotype responsible for serum vibriocidal activity.

    No full text
    Serum vibriocidal antibody assays have long been used to evaluate the immunogenicity of cholera vaccines formulated with killed whole-cell Vibrio cholerae. However, the antibody isotypes responsible for the serum vibriocidal activity are not fully characterized. In this study, we examined 20 clinical serum samples obtained from human subjects who had been vaccinated with a killed, whole-cell cholera vaccine and a positive control, human convalescent sera with high vibriocidal activity, to determine which isotype antibody is associated with the vibriocidal activity. Antibody isotypes from pooled convalescent sera were fractionated by size-exclusion column chromatography, and the major vibriocidal activity was detected in the IgM fraction. Depletion of IgM antibodies in the convalescent sera produced a significant (P<0.05) decrease in vibriocidal activity (16-fold decrease), whereas only a small change was observed with depletion of IgG or IgA. In addition, anti-LPS IgM antibody showed the highest correlation with vibriocidal activity (Spearman correlation coefficient r = 0.846) among antibody isotypes against heat-killed V. cholerae, lipopolysaccharide (LPS), or major outer membrane protein (Omp U), while total IgG, IgA, or IgM antibody level was not correlated with vibriocidal activity in the 20 human clinical serum samples. Furthermore, human convalescent sera significantly (P<0.001) inhibited the attachment of V. cholerae to HT-29, a human intestinal epithelial cell in vitro. Interestingly, IgM-depleted convalescent sera could not effectively inhibit bacterial adherence compared with non-depleted sera (P<0.05). Finally, bacterial adhesion was significantly inhibited by sera with high vibriocidal titer compared with low-titer sera (P = 0.014). Collectively, we demonstrated that anti-V. cholerae LPS IgM is highly correlated with serum vibriocidal activity and it could be a surrogate antibody isotype representing protective antibodies against V. cholerae

    Isolation of Salmonella enterica subspecies enterica serovar Paratyphi B dT+, or Salmonella Java, from Indonesia and alteration of the d-tartrate fermentation phenotype by disrupting the ORF STM 3356.

    No full text
    Salmonella enterica subspecies enterica serovar Paratyphi B [O1,4,(5),12 : Hb : 1,2] can cause either an enteric fever (paratyphoid fever) or self-limiting gastroenteritis in humans. The d-tartrate non-fermenting variant S. enterica subsp. enterica serovar Paratyphi B dT- (S. Paratyphi B) is the causative agent of paratyphoid fever, and the d-tartrate fermenting variant S. enterica subsp. enterica serovar Paratyphi B dT+ (S. Paratyphi B dT+; formerly called Salmonella Java) causes gastroenteritis. S. Java is currently recognized as an emerging problem worldwide. Twelve dT+ S. Java isolates were collected in Indonesia between 2000 and 2002. One-third of them contained Salmonella genomic island 1 (SGI1), which gives the multidrug-resistant phenotype to the bacteria. In this study, a PCR-based method to detect a single nucleotide difference responsible for the inability to ferment d-tartrate, reported elsewhere, was validated. The d-tartrate fermenting phenotype of S. Java was converted to the non-fermenting phenotype by the disruption of the ORF STM 3356, and the d-tartrate non-fermenting phenotype of the ORF STM 3356-disrupted strain and the dT- reference strain was changed to the dT+ phenotype by complementing ORF STM 3356 in trans. The results show that the dT+ phenotype requires a functional product encoded by STM 3356, and support the use of the PCR-based discrimination method for S. Paratyphi B and S. Java as the standard differentiation method

    Draft Genome Sequence of Klebsiella pneumoniae subsp pneumoniae DSM 30104(T)

    No full text
    Klebsiella pneumoniae is a Gram-negative, rod-shaped, nonmotile, and opportunistic pathogenic species with clinical importance. It is a part of natural flora of humans and animals. Here we report the draft genome sequence of the type strain of Klebsiella pneumoniae subsp. pneumoniae (DSM 30104(T)) to provide taxonomic and functional insights into the species.

    Comparison of anti-Vi IgG responses between two clinical studies of typhoid Vi conjugate vaccines (Vi-DT vs Vi-TT).

    No full text
    Salmonella enterica serovar Typhi (S. Typhi) is a causative agent for typhoid fever and especially critical in developing countries. Although clinical studies for various typhoid conjugate vaccines (TCVs) have been performed, there are no comparative data on the immune responses of vaccines due to lack of harmonization of the serological assay. Recently, Typbar-TCV (Vi-TT) was prequalified by WHO and recommended for vaccination in endemic areas. Forty-eight serum samples were selected from a recent Vi-DT phase 1 study based on age cohort and anti-Vi IgG levels using an in-house ELISA. Anti-Vi IgG titers of 48 sera were also determined by Vacczyme ELISA, used in a Vi-TT phase 3 trial. A good correlation between the two assays was observed when the anti-Vi IgG titer was determined using Vacczyme ELISA based on the Vi-IgGR1,2011, U.S. reference reagent (Pearson correlation coefficient (r) = 0.991, P < 0.001) or Vacczyme ELISA calibrator (r = 0.991, P < 0.001). Based on the correlation, multiple linear regression model was developed to convert data of 281 sera (prior to vaccination and 28 days post first-dose) in the Vi-DT phase 1 study from in-house ELISA titers to Vacczyme ELISA values and then, compared with the Vi-TT results. Similar estimates of anti-Vi IgG GMT were observed after vaccination with the Vi-DT and Vi-TT vaccines [1626 EU/ml (95% CI: 1292-2047) vs 1293 EU/ml (95% CI: 1153-1449), respectively]. The method used here can be implemented to estimate and compare anti-Vi IgG levels between different clinical studies of TCVs. This approach enables comparison of the antibody responses among TCVs under development and may help facilitate licensing of new TCVs

    Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge.

    No full text
    Intramuscular (IM) vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) failed in clinical trials due to vaccine-enhanced respiratory disease. To test the efficacy of skin vaccination against respiratory syncytial virus (RSV), we investigated the immunogenicity, efficacy, and inflammatory disease after microneedle (MN) patch delivery of FI-RSV vaccine (FI-RSV MN) to the mouse skin with or without an adjuvant of monophosphoryl lipid A (MPL). Compared to IM vaccination, MN patch delivery of FI-RSV was more effective in clearing lung viral loads and preventing weight loss, and in diminishing inflammation, infiltrating immune cells, and T helper type 2 (Th2) CD4 T cell responses after RSV challenge. With MPL adjuvant, MN patch delivery of FI-RSV significantly increased the immunogenicity and efficacy as well as preventing RSV disease as evidenced by lung viral clearance and avoiding pulmonary histopathology. Improved efficacy and prevention of disease by FI-RSV MN with MPL were correlated with no sign of airway resistance, lower levels of Th2 cytokines and infiltrating innate inflammatory cells, and higher levels of Th1 T cell responses into the lung. This study suggests that MN patch delivery of RSV vaccines to the skin with MPL adjuvant would be a promising vaccination method
    corecore