996 research outputs found

    Research Progress and Development of Sapphire Fiber Sensor 1

    Get PDF
    Abstract: Sapphire fiber thermometers have become a new potential option in the field of high-temperature measurements. Recent research progress of sapphire fiber sensors is summarized; operational principles, advantages, disadvantages, and applications of sapphire fiber sensors are introduced. Research has shown that sapphire fiber sensors can be used to accurately measure very high temperatures in harsh environments and has been widely applied in fields such as aviation, metallurgy, the chemical industry, energy, and other high temperature measurement areas. Sapphire optical fiber temperature measurement technology will move toward miniaturization, intelligence following the advances in materials, micro-fabrication and communication technologies. Copyright © 2014 IFSA Publishing, S. L

    Kinetic Approaches to Understanding the Mechanisms of Fidelity of the Herpes Simplex Virus Type 1 DNA Polymerase

    Get PDF
    We discuss how the results of presteady-state and steady-state kinetic analysis of the polymerizing and excision activities of herpes simplex virus type 1 (HSV-1) DNA polymerase have led to a better understanding of the mechanisms controlling fidelity of this important model replication polymerase. Despite a poorer misincorporation frequency compared to other replicative polymerases with intrinsic 3′ to 5′ exonuclease (exo) activity, HSV-1 DNA replication fidelity is enhanced by a high kinetic barrier to extending a primer/template containing a mismatch or abasic lesion and by the dynamic ability of the polymerase to switch the primer terminus between the exo and polymerizing active sites. The HSV-1 polymerase with a catalytically inactivated exo activity possesses reduced rates of primer switching and fails to support productive replication, suggesting a novel means to target polymerase for replication inhibition

    AST-GIN: Attribute-Augmented Spatial-Temporal Graph Informer Network for Electric Vehicle Charging Station Availability Forecasting

    Full text link
    Electric Vehicle (EV) charging demand and charging station availability forecasting is one of the challenges in the intelligent transportation system. With the accurate EV station situation prediction, suitable charging behaviors could be scheduled in advance to relieve range anxiety. Many existing deep learning methods are proposed to address this issue, however, due to the complex road network structure and comprehensive external factors, such as point of interests (POIs) and weather effects, many commonly used algorithms could just extract the historical usage information without considering comprehensive influence of external factors. To enhance the prediction accuracy and interpretability, the Attribute-Augmented Spatial-Temporal Graph Informer (AST-GIN) structure is proposed in this study by combining the Graph Convolutional Network (GCN) layer and the Informer layer to extract both external and internal spatial-temporal dependence of relevant transportation data. And the external factors are modeled as dynamic attributes by the attribute-augmented encoder for training. AST-GIN model is tested on the data collected in Dundee City and experimental results show the effectiveness of our model considering external factors influence over various horizon settings compared with other baselines.Comment: 10 pages; 17 figures; Under review for IEEE Transaction on Vehicular Technolog
    corecore