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Abstract

Multiscale representation of a 3D surface mesh is a useful tool to understand a mesh both locally and globally. One method is to
analyse eigenvalues and eigenvectors of some matrix which represents a discrete operator (e.g. the Laplacian) taking into account the
topological and/or geometric structure of the input mesh. However, eigendecomposition is computationally expensive, making this
method intractable for meshes containing more than a few thousand vertices. To overcome this problem, we present a novel method for
multiscale mesh representation which avoids solving an eigenproblem, based on the proposed stochastic mesh Laplacian. We present
the complete algorithm and the theoretical analysis of the stochastic mesh Laplacian. In the experiments, we compare our method
with several state-of-the-art approaches to demonstrate its advantages over popular frameworks such as spectral mesh processing, heat
diffusion and wavelets. The utility of the method is demonstrated via applications in mesh saliency and interest point detection.

Keywords: Multiscale representation, stochastic matrix, Laplacian, mesh saliency.

1. Introduction

Multiscale representation of manifolds and graphs, in partic-
ular 3D surface meshes, provides an analytical tool to capture
and interpret information conveying local and global shape struc-
tures. It provides a basis for state-of-the-art approaches to a wide
range of graphics applications including mesh saliency [1, 2], 3D
feature detection [3, 4], mesh segmentation [5, 6], mesh com-
pletion [7], 3D face recognition [8] and shape retrieval [9, 10].
It also has promise for applications in manifold approximation,
learning and dimensionality reduction [11].

Recent years have witnessed a variety of methods for multi-
scale mesh representation, with a leading class of approaches
based on eigenvalues and eigenvectors of the Laplacian and its
generalisations [4, 11, 12, 13, 8]. The eigenvectors form a set
of basis functions which uniquely define a vector space in Rm,
where m denotes the number of vertices in the mesh. A multi-
scale representation can be obtained by first projecting the orig-
inal mesh onto these basis functions in Rm and then retaining
different number of coefficients. However, computing the eigen-
values and eigenvectors of a matrix has a computational com-
plexity of O(m3) and thus is usually very expensive for a large
matrix. Aiming to overcome this problem, we present a novel
framework for multiscale mesh representation based on the pro-
posed stochastic mesh Laplacian. Compared to previous model-
driven, top-down methods [14, 15, 16], it promises greater flexi-
bility and simplicity as we do not need to design a specific model
fitting the problem in each case. Furthermore, since the stochas-
tic mesh Laplacian is locally-supported and discriminative, it can
effectively preserve local geometric features. This is an appeal-
ing property for many applications such as mesh saliency and
interest point detection.
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In summary, the three specific contributions of this paper are:

• A novel and efficient method for representing meshes at
multiple scales based on the stochastic mesh Laplacian;

• A sketched theoretical analysis of the properties of stochas-
tic Laplacian for multiscale mesh representation;

• Demonstration of uses of the proposed method in applica-
tions including mesh saliency and interest point detection.

2. Related work

In this section, we briefly review previous work on multiscale
mesh representation, including spectral mesh processing, heat
diffusion, wavelets and point-based methods.

Spectral mesh processing. As summarised in [13, 17], mesh
processing in the spectral domain was inspired by use of the
Fourier transform for 2D images. Explicitly, the eigenvectors of
the discrete Laplacian used for spectral processing behave anal-
ogously to the basis functions of the discrete Fourier transform
and can be regarded as its extension to irregular domains [18].
To obtain a multiscale description, an eigendecomposition of the
Laplacian is performed and then the mesh is projected onto the
eigenvectors. These eigenvectors can be viewed as manifold har-
monics and form an orthonormal basis in the square-integrable
Hilbert space. In a multiscale representation based on spec-
tral mesh processing, small-scale mesh information is captured
by eigenvectors corresponding to large eigenvalues while large-
scale information is captured by eigenvectors corresponding to
small (but non-zero) eigenvalues.

Heat diffusion. The generating equation of a linear multiscale
representation is the linear heat diffusion equation [19], so a mul-
tiscale representation of a manifold can be obtained by solving
an appropriate heat diffusion problem. The fundamental solution
of the heat diffusion equation is known as the heat kernel. For-
mally, it can be expressed as ht(p, q) =

∑m
f =1 e−λ f tψ f (p)ψ f (q),
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which can be physically regarded as the amount of heat trans-
ferred from a vertex p to another vertex q in time t given a unit
heat source at p. λ f and ψ f are the f th eigenvalue (in ascending
order of size) and corresponding eigenvector of the Laplacian.
The heat kernel has quite a few nice properties [4]. Among them,
the multiscale property reflects the ability of the heat kernel to
capture local or global shape information over small or large t
respectively, making heat diffusion and the heat kernel a popular
tool in a wide range of applications, including mesh fairing [20],
data representation and dimensionality reduction [21], shape seg-
mentation [22] and shape matching [23]. A concise heat kernel
signature (HKS) is proposed in [4] as a temporal domain restric-
tion of the heat kernel on a manifold for efficient computation. It
also demonstrated that the HKS preserves all of the information
about intrinsic geometry.

Wavelets. Both spectral mesh processing and heat diffu-
sion require the inefficient eigendecomposition of the Laplacian.
Also, multiscale representations produced by the two methods
are not locally supported: the eigenvectors of the Laplacian are
determined by the whole manifold and its global properties (e.g.
topological invariants). This leads to poor suboptimal results in
applications requiring an operator with good localisation prop-
erty such as mesh denoising, sampling, saliency detection and
interest point detection.

For these two reasons, wavelets on meshes have been ex-
tensively studied for more than two decades since the publica-
tion of [24]. On one hand, wavelets can facilitate multiscale
analysis on meshes by dilating mother wavelet, which is po-
tentially more efficient than solving the Laplacian eigenprob-
lem; on the other hand, wavelets provide powerful localisation
in both spectral and spatial domains, making them better suited
to representing functions whose nature varies in different sur-
face regions. Conventional wavelets-based methods for multi-
scale mesh representation are built upon explicit mesh subdivi-
sion schemes [14, 15, 16]. However, an equally-fine subdivision
is computationally costly, and its construction is typically model-
driven. Hence, in recent years, more flexible wavelet tools, dif-
fusion wavelets [11, 25, 26, 27], have been proposed. The basic
idea is to use powers of a diffusion operator on a manifold to
capture multiscale information in both spatial and spectral do-
mains. Compared to conventional wavelets on meshes, the focus
shifts from dilation groups acting ‘geometrically’ in the space,
to diffusion semigroups acting on functions in the space [11].
Wavelet-based multiscale representation of 3D surface meshes
have been applied to mesh saliency [27], interest point detection
[27], surface denoising [28] and mesh optimisation [29].

However, a general difficulty in employing wavelets for graph-
ics applications is the design of the wavelet generating kernel,
since it is typically task-oriented, with different wavelet gener-
ating kernels having different properties. In contrast, the frame-
work proposed in this paper is generic, as well as being easily
implemented, making it widely applicable. Moreover, the pro-
posed method is significantly more efficient than a state-of-the-
art wavelet-based method as shown later in our experiments.

Point-based methods. The progressive point set surfaces pro-
posed in [30] constructed a multiscale point-based surface rep-
resentation by progressively refining a smooth base surface in a
coarse-to-fine manner. [31] gave a multiscale surface representa-
tion scheme based on point samples, implemented via a smooth-
ing operator and a decomposition operator. The smoothing oper-
ator generated successively smoother approximations to the sur-
face while the decomposition operator provided detail preserva-
tion. [32] provided a multiscale representation based on interpo-
lation of scattered points. It can generate implicit solids that can

be used in applications such as surface morphing and carving.
The point-based methods usually require that the density of

points is highly uniform to make sure that the implicit connectiv-
ity information can be correctly exploited. So compared with the
previous three categories of methods, this requirement limits its
applications.

3. Multiscale mesh representation via stochastic mesh Lapla-
cian

The concept of multiscale representation of a 3D surface mesh
can be understood in two ways: spatially or spectrally. In the
spatial domain, it can be interpreted as a shape description rep-
resenting a given mesh at different levels of details, explicitly
encoding the geometry of local surface areas in different sizes.
In the spectral domain, the multiple levels essentially correspond
to different frequency bands in the spectrum of the mesh. High
frequencies represent fine details while low frequency bands cap-
ture coarse details. Global and topological structures in geomet-
ric data can be effectively revealed in the spectral domain [13].

As pointed out in [31], a multiscale representation describes
a surface at different levels of details without any reference to
a particular sampling distribution, which suggests its difference
from another popular concept, multiresolution representation. A
multiresolution representation refers to a set of surface approx-
imations with varying sampling resolution (i.e., number of ver-
tices), thus describing a surface at potentially different levels of
coarseness. For multiscale representation, the sampling resolu-
tion might remain the same (e.g., a mesh hierarchy produced by
repeatedly applying a Laplacian filter to smooth the mesh). It is
difficult to clarify the rigorous mathematical definition for multi-
scale mesh representation since as a widely used semantic term,
its concept often slightly varies in different graphics applications.

3.1. Problem statement

The main target of this paper is to present a framework of mul-
tisacle mesh representation which can be used for efficient and
effective multiscale analysis on a 3D surface mesh. The problem
can be defined as below.

Given a mesh M, we seek a sequence of meshes representing
M at multiple scales and their corresponding coefficients. The
meshes at multiple scales form a hierarchy of surface approx-
imations, delivering multiple levels of surface details based on
M. And, the original M can be reconstructed from any of the
meshes using the coefficients.

Our method is composed of two major components, one is the
stochastic mesh Laplaican. The other is the formulation of a mul-
tiplicative function α for a scale invariant representation. In the
following, we first elaborate the two components separately and
then propose the complete algorithm integrating them, followed
by the sketched analysis on its nice properties.

3.2. Stochastic mesh Laplaican

The Laplacian matrix of a mesh is based on the discretisa-
tion of a continuous Laplacian (e.g., the Laplace-Beltrami oper-
ator) defined mathematically for a smooth manifold using some
weighted sum of adjacent vertices [33]. If a mesh M contains
m vertices P1, . . . , Pm, in its simplest form, the Laplacian matrix
can be computed as:

L = D − A (1)
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where A is the adjacency matrix between vertices, given by

A(i, j) =

{
1 if Pi and P j are neighbours
0 otherwise , (2)

and D is a diagonal matrix in which Dii is the degree of vertex
pi. This simplest computational model merely takes into account
the topology (connectivity). Ideally, a multiscale representation
should not only describe the topological structure of the mesh,
but also encode its local geometric details. To incorporate lo-
cal small-scale geometric information, the adjacency matrix is
weighted by the distances between neighbouring vertices:

W(i, j) =
1∥∥∥Pi − P j

∥∥∥2 A(i, j); (3)

This leads to the mesh Laplacian

L = D −W (4)

Note that there are other ways to compute the geometric weights
for a mesh Laplacian, such as the uniform Laplacian [34] where
W(i, j) = 1 and the popular cotangent Laplacian [20] where
W(i, j) = cot φ1 + cot φ2 and φ1 and φ2 are the two angles oppo-
site to the edge linking i and j in the two triangles that have this
edge in common. We generate the weights using the distances
between neighbouring vertices in Eq. (3) since it is consistent
with our computation of the scale invariance function elaborated
in Section 3.3, which accelerates the implementation of the algo-
rithm as a whole.

In this work, we propose two novel steps. First, we compute
L̂ composed of the absolute values of the elements of the mesh
Laplacian: L̂i j =

∣∣∣Li j

∣∣∣. And second, we normalise L̂ subsequently
so that the sum of each row is 1

L =
[
L̂
]
r

(5)

where [·]r denotes the row-based normalisation.
Since L is now a stochastic matrix, by a slight abuse of no-

tation, we name L stochastic mesh Laplacian simply to differ
it from other mesh Laplacians. Note that researchers have devel-
oped different approximations of the real Laplacian (i.e. Laplace-
Beltrami operator) used in the heat diffusion equation [4]. These
approximations have their own advantages and disadvantages.
For example, the popular cotangent Laplacian is known to be a
good approximation of the surface normal [34] but does not con-
verge in general [4]. Also, as revealed in [34], it tends to flatten a
feature vertex into the surface defined by its 1-ring neighbouring
vertices. This is highly undesirable in a multiscale representation
where we expect that features can always be well preserved. In
this work we shall show that the proposed stochastic mesh Lapla-
cian has a desired property of preserving features in a multiscale
mesh representation.

3.3. Scale invariant representation
As pointed by Koenderink [19], the generating equation of a

linear multiscale representation is the linear heat diffusion equa-
tion. Let S (k) = (P(k),T ) denote the representation of a 3D sur-
face mesh at a particular scale k where P(k) is the set of vertices
at scale k with P(1) = P representing the vertices of the original
mesh and T is the set of triangular faces. P(k) can be obtained by
solving an appropriate heat diffusion problem:

∂P(k)

∂k
− η∆P(k) = 0, (6)

Algorithm 1: Multiscale mesh representation via stochastic
mesh Laplacian
Data: A mesh M represented by a m × 3 vertex matrix P

where each row denotes a vertex and a face matrix T
where each row denotes a triangular face, written as
(P,T )

Result: A sequence of S (k) representing M at multiple scales
and a sequence of corresponding coefficients C(k).

begin
Compute the scale invariance function α;
Compute L̂ and then the stochastic mesh Laplacian L,
input the number of scales as K and a precision λ;
Initialise S (1) = (P(1),T ) where P(1) = P;
Initialise C(1) = 0m,3;
Initialise F = L;
for k ← 2 to K do

Update F by matrix multiplication F = FL̂;
Generate the new stochastic Laplacian F = [F]r;
for i← 1 to m do

for j← 1 to m do
if F (i, j) < λ then
F (i, j) = 0

Update the stochastic matrix through multiplying
each of its rows by α to achieve the scale invariance:
Fi = α ◦ Fi where ◦ denotes the Schur product;
F = [F]r;
P(k) = FP;
C(k) = P(k−1) − P(k);
S (k) = (P(k),T );

where η is the diffusion constant and ∆ denotes the Laplace oper-
ator. ∆P(k) can be computed by a finite difference approximation
to ∂P(k)/∂k, using the difference of nearby scales at αk and k:

η∆P(k) =
∂P(k)

∂k
≈

P(αk) − P(k)

αk − k
(7)

where α is a multiplicative factor. According to Lindeberg [35],
the normalisation of the Laplacian is required for scale invari-
ance. Therefore, considering Eq. (7), we have

(α − 1)kη∆P(k) = k∆P(k), so α =
1
η

+ 1. (8)

In the diffusion equation Eq. (6), η is the diffusivity, which
depends on the density of the material. A 3D surface mesh has
different local densities of vertices, which can be reflected by the
distance between two neighbouring vertices. We thus formulate
α by relating density to the average of the normalised distances
between a vertex and its 1-ring neighbours.

α(i) =
1
η

+ 1 =
cn∑

j∈N(i)

∥∥∥Pi − P j

∥∥∥ + 1 (9)

where n denotes the number of vertex i’s 1-ring neighbours and
N(i) denotes its 1-ring neighbourhood. c is a normalisation con-
stant set to the average interpoint distance of the mesh. α is a
fixed value for each vertex and does not change in each iteration
of our algorithm.

3



Figure 1: The stochastic mesh Laplacians of a horse mesh containing 7502 vertices. Top row: from left to right, the original mesh, the stochastic mesh Laplacians
produced with the thresholding (λ = 0.001) at the scales of k = 4, 8 and 12; Bottom row: from left to right, the initial stochastic mesh Laplacian L (with the scale of
k = 1), the stochastic mesh Laplacians produced without the thresholding at the scales of k = 4, 8 and 12.

3.4. The complete algorithm

We explicitly show our algorithm in Algorithm 1. It is based
on the iterative updates of the stochastic mesh Laplacian through
matrix multiplication.

The row-based normalisation in Algorithm 1 guarantees that
the vertex matrix is updated by a stochastic matrix in each iter-
ation, which in fact describes the transitions of a Markov chain.
It is known that for a stochastic matrix L, Li j denotes the prob-
ability of the one-step transition from the point Pi to one of its
neighbouring points P j. Therefore, the k-th stochastic Laplacian
produced through a series of k − 1 matrix multiplications gives
the k-step transition probability. Since the matrix of stochastic
Laplacian is sparse and here we also set a precision value λ (set
to 0.001 in this work) to rule out small entries, most transitions
are prohibitive (transition probability equals zero). And, only the
transitions within a neighbourhood is available because it is con-
structed based on the adjacency matrix. Hence, the k-step tran-
sition actually defines a connected k-ring neighbourhood while
all other connectivities/paths are prohibited. Also, the row-based
normalisation after multiplying a row of the stochastic matrix by
α makes the algorithm numerically stable since we used a fixed
λ to suppress the small entries of the matrix. Note that as com-
puted in Eq. (9), α is always larger than 1. So if we just keep
multiplying a row by α in each iteration but do not normalise
it, the fixed threshold λ will be pointless after several iterations
since the entries of the stochastic matrix will become too large
numerically.

When we perform the multiplication P(k) = FP in Algo-
rithm 1, we essentially perform a displacement in a k-ring neigh-
bourhood for each vertex. Such a vertex displacement leads to
the loss of local details and a hierarchy of meshes with multiple
levels of details is formed. We shall analyse the vertex displace-
ment in details in Section 3.8. On the other hand, if we record the
displacements for all vertices as coefficients, we can reconstruct
the original mesh using the coefficients from the coarsest scale.

Although Algorithm 1 contains some heuristic steps, they lead

to several desired properties of the stochastic Laplacian. In the
following, we shall present some brief theoretical analysis of the
properties in the hope that the behaviour of the stochastic Lapli-
can can be well understood.

3.5. Computational complexity

This section provides an analysis for the computational com-
plexity of our method. According to Algorithm 1, the compu-
tational complexity depends on the multiplication of the sparse
matrices F = FL̂.

Proposition 1. Given that m is the number of vertices in the
original mesh, K is the total number of scales and n denotes the
number of non-zero elements in the adjacency matrix, the naive
computational complexity of the algorithm is not greater than
O((K − 1)mn).

Proof 1. Given that at some scale, there are fi non-zero elements
in the i-th column of the stochastic Laplacian F (assuming that
it contains n′ non-zeros in total) and li non-zero elements in the
i-th row of L̂ respectively, the naive complexity of the matrix mul-
tiplication at that scale can be computed as

O =
∑

i

fili (10)

Considering
∑

i fi ≤ n′,
∑

i li ≤ n (since the sparseness of L̂ is the
same as that of the adjacency matrix) and 0 ≤ fi, li ≤ m, we have

O =
∑

i

fili ≤
∑

i

fim ≤ mn′ (11)

and similarly

O =
∑

i

fili ≤
∑

i

nli ≤ mn (12)
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Figure 2: Basis functions produced by our method and the eigendecomposition of the mesh Laplacian. Left: the 1000th basis function at the scale of k = 4; Middle:
the 1000th basis function at the scale of k = 8; Right: the 1000th eigenvector of the mesh Laplacian

According to Algorithm 1, due to the dilation effect produced
by the matrix multiplications (see Fig. 1), the sparseness of the
stochastic Laplacian F is lower than that of L which has the
same sparseness with the adjacency matrix. Hence n < n′ and
the computational complexity of producing multiscale represen-
tation with K scales is not greater than O((K − 1)mn).

Eq. (12) can be understood in this way: each element of L̂ is
multiplied by at most m elements from F and we only need to
consider the n non-zero elements in L̂. Thus the exact complex-
ity of the proposed method also depends on the sparseness of the
stochastic Laplacian F in each iteration. This lies our motivation
for introducing the thresholding which accelerates our method
significantly. As shown in Fig. 1, with the thresholding delivered
by the precision λ, the sparseness of the stochastic Laplacians
does not decrease too much at large scales. In a sharp contrast,
the number of non-zero elements increases rapidly without ap-
plying the proposed thresholding scheme. In short, the efficiency
of our method depends on both the number of the vertices and
their connectivity.

In comparison, the naive computational complexity of spectral
mesh presentation is O(m3) due to the computationally expensive
eigendecomposition. The Gaussian-based methods [1, 36] need
to iteratively identify the neighbours of each vertex by nearest
neighbour search and then apply a convolution over the neigh-
bourhood. Assuming it computes at K scales and on average
the identified neighbourhood includes c vertices, the naive com-
plexity of the Gaussian-based methods is O(Kcm2). The point-
based methods have similar complexity with the Gaussian-based
methods since they also identify and process a number of neigh-
bourhoods based only on Euclidean distance. The computational
complexity of wavelets-based methods also depends on both the
number of vertices and their connectivity. According to [27],
the complexity for wavelets-based methods is O(mn2K−1

). Fur-
thermore, since the wavelet functions are typically dilated by the
dyadic powers of some local operators, the wavelet is much less
sparse than the stochastic mesh Laplacian at the same scale. Thus
in practice, as we can see later in the experiment section, our
method is significantly faster than the wavelets-based methods.

3.6. Localisation property
To understand the nice localisation property of the stochastic

mesh Laplacian, we analyse the spectral processing method in a
comparative manner.

For spectral mesh processing, given that P is the vertex ma-
trix of a mesh including m vertices and E is the matrix whose
columns are the m normalised eigenvectors of the Laplacian ma-
trix of the mesh, P can be expressed as

P = EC (13)

where C denotes the matrix composed of spectral coefficients.
Because the columns of E are normalised, C can be computed as

C = ET P (14)

where ET is the transpose of E. Note that in continuous do-
main, such coefficients ci( j) =

〈
e j, P

〉
where ci is the i-th row

of C and the basis e j is the j-th column of E actually denote
the manifold harmonic transform (MHT) [37] which for a func-
tion f , is defined as the inner product of a basis function φ and
f : Hφ( j) =

〈
φ j, f

〉
where j is related to the ‘frequency’ (cor-

responding to the index of the eigenvalues of the Laplacian in
the spectral mesh processing). A multiscale representation of the
mesh is constructed by using the k (k < m) leading eigenvectors,

C(k) = E(k)T
P (15)

where E(k) is the matrix composed of the k eigenvectors corre-
sponding to the k smallest eigenvalues of the Laplacian matrix.

In spectral mesh processing, the eigenvectors of the Lapla-
cian can be interpreted as a set of basis functions which define
a Hilbert space. Essentially, a multiscale mesh representation is
a sequence of projections of the original mesh in multiple scale
spaces defined by multiple sets of basis functions.

In our method, according to Algorithm 1, we have

C(k) = P(k−1) − P(k) = (F(k−1) − F(k))P. (16)

Thus like E(k)T in Eq. (15), F(k−1) − F(k) in Eq. (16) can
also be interpreted as the basis functions which define a scale
space. There is no guarantee that the basis functions {ϕk,i|i =
1, 2, . . . ,m}, which are the rows of the matrix F(k−1) − F(k), are
orthogonal. But since the matrix is highly sparse and we perform
row-based normalisation at each iteration which suppresses the
magnitudes of the non-zero elements, it can be validated exper-
imentally that the basis functions are generally ‘highly orthogo-
nal’ (their inner products are zero or very close to zero). Note that
the eigenvectors of the Laplacian matrix are also not strictly or-
thogonal since the discretization of a continuous Laplacian leads
to the loss of its strict symmetry. Even so, the past two decades
have witnessed a considerable amount of work using spectral
mesh processing and applications based on it, including mesh
compression [38, 39], smoothing [18, 40], segmentation [5, 6],
quadrangulation [41] and shape matching [42]. As shown in pre-
vious papers, loss of strict orthogonality has no significant impact
on the multiscale representation.

In fact, it is impossible to construct a basis which is simul-
taneously fully orthogonal and locally supported [14]. A set of
locally-supported basis functions make it possible to associate
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Figure 3: Applying our method on a sphere mesh where k = 1 corresponds to the original sphere mesh.

Figure 4: Vertex displacement. (a) Colour map of vertex displacement: warm colour denotes that the vertex moves a large distance from S (10) to S (11). (b) Vector map
of vertex displacement: each arrow represents a vector of vertex displacement from S (10) to S (11); the subfigure shows that the marked vertex in S (10) will move to the
bottom right and the marked triangle will be stretched in S (11). (c) The stochastic mesh Laplacian (k = 10) applied at the marked vertex (d) A discrete visualisation of
the stochastic mseh Laplacian where the sizes of the yellow balls are proportional to the corresponding entries of the stochastic mesh Laplacian.

local features captured in the spectral domain with local geo-
metric features observed in the spatial domain. Thus in many
graphics applications such as saliency detection, mesh segmen-
tation and interest point detection, a nice localisation property
is more desired due to the need of accurate feature localisation.
Compared with the Laplacian eigenvectors which are in general
highly non-localised, being global Fourier modes (the sinusoidal
behaviour of the eigenvectors of the 1D discrete Laplacian can
be seen in Fig. 4 in [13]), the nice localisation of the basis func-
tions produced by our method allows to reinterpret most of the
operations in the spectral domain in a geometric fashion. An in-
tuitive comparison is shown in Fig. 2. It can be seen that instead
of oscillating across the entire domain like the eigenvectors of
the Laplacian, the basis functions produced by our method are
locally supported.

3.7. Admissibility

Admissibility is a vital property for wavelet transform, as it
ensures that the transform can be recovered. Hou and Qin [27]
demonstrated that admissible wavelets facilitate mesh process-
ing, generating nice results in applications such as mesh saliency,
interest point detection and surface filtering. In [27], the admis-
sibility condition in manifold space is defined as below:

Definition 1. Admissibility condition: On manifold with
bounded geometry, a basis function ϕ is admissible, or equiv-

alently satisfies the admissibility condition, if
∑∞

j=0
|Hϕ( j)|

2

j < ∞,
where Hϕ denotes MHT of ϕ.

Based on Definition 1, we can prove the following proposition:

Proposition 2. The basis functions {φk,i|i = 1, 2, . . . ,m} pro-
duced by our method, which are the rows of the matrix F(k−1) −

F(k), are admissible.

Proof 2. According to Algorithm 1, each row f (k)
i of F(k) is nor-

malised to 1. Thus each basis function ϕk,i has a zero mean
m∑

j=1

ϕk,i( j) =

m∑
j=1

f (k−1)
i ( j) −

m∑
j=1

f (k)
i ( j) = 0. (17)

Hence, it vanishes at zero frequency in its MHT,

Hϕk,i (0) = 0. (18)

Also, since the basis function ϕk,i is locally-supported, it has lim-
ited bandwidth in its MHT. Assume that its upper frequency is J.
We then have,

Hϕk,i ( j) = 0, for j > J. (19)

Hence, we have

∞∑
j=0

∣∣∣Hϕ( j)
∣∣∣2

j
=

J∑
j=1

∣∣∣Hϕ( j)
∣∣∣2

j
< ∞, (20)

and hence, ϕk,i is admissible.

Since the basis functions ϕk,i satisfy the admissibility condi-
tion, we can use a method similar to [27] for the reconstruction
of the original mesh. In [27], a function (e.g., the vertices of a 3D
surface mesh) can be rapidly reconstructed by aggregating a se-
ries of K levels of wavelet coefficients {W f (k)}Kk=1 and a scaling
coefficients at the coarse level S f (K),

f (x) = S f (0, x) = S f (K, x) +

K∑
k=1

W f (K, x). (21)

In this work, the vertex matrix P of the original mesh S = (P,T )
can be reconstructed from a series of coefficients C(k) and the
mesh representation at the coarsest level, formulated as below

P = P(1) = P(K) +

K∑
k=1

C(k) (22)
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Figure 5: A comparison of two multiscale representations for the horse mesh shown in Fig. 1. (a) The multiscale representation produced by spectral mesh processing
using k leading eigenvectors (courtesy of [13]) (b) the multiscale representation produced by the stochastic mesh Laplacian where k denotes the scale.

3.8. Discriminability
The discriminability of a multiscale mesh representation is

the capacity that it can discriminate the distinctive vertices in
the mesh. It is delivered through discriminative vertex displace-
ment. Ideally, distinctive vertices should remain fixed in place
or only moves slightly, while other vertices can be subject to
large displacement. Note that neither the uniform Laplacian nor
the widely used cotangent Laplacian using a weighting scheme
different from Eq. (3) can achieve this as shown and analysed
in [34], which typically results in the local features excessively
smoothed since a feature vertice tends to move towards the sur-
face defined by its 1-ring neighbouring vertices. By contrast, we
shall take a sphere mesh as an example to demonstrate that the
heuristics such as the weighting scheme introduced in Eq. (3)
for computing the stochastic mesh Laplacian leads to the desired
vertex displacement, which guarantees that the proposed multi-
scale representation based on it is discriminative and thus good
at preserving local geometric features.

The original sphere is shown in the leftmost part of Fig. 3. It
can be observed that all vertices on the sphere are geometrically
equivalent since they have the same curvature. However, they
are not topologically equivalent. Some have 5 neighbours while
most have 6 neighbours. Such topological difference might not
be easily observed on the original mesh but it becomes rather
visible on the representations of large scales: the vertex density
around the distinctive vertices (the ones with 5 neighbours) is sig-
nificantly higher when k = 20 since they only suffer from small
displacements while other vertices move a lot towards them.

To study such vertex displacement, we mark a vertex in red
and one of its neighbouring triangles in green as shown in Fig. 3.
It can be seen that the green triangle keeps stretching when k
is increasing. More specifically, we show vertex displacement
between the representations S (10) and S (11) in Fig. 4(a) and (b).
Fig. 4(a) shows the colour map of the magnitude of vertex dis-
placement. Intuitively, vertices suffer from different magnitudes
of displacement. The distinctive vertices suffer from small dis-
placement while most of the others experience large displace-
ment. In (b), we can see that from S (10) to S (11), the marked
vertex will move to the bottom right and the marked triangle will
be stretched by looking at the directions of the displacements of
its three vertices. Fig. 4(c) and (d) further illustrate what really
controls magnitude and direction of vertex displacement. (c) vi-
sualises the stochastic mesh Laplacian of scale k = 10 applied at

the marked vertex in a continuous mode where the colour corre-
sponds to the entries of the stochastic mesh Laplacian, which, as
we mentioned in Section 3.4, denote the probabilities of displace-
ments within a 10-ring neighbourhood. Note that the neighbour-
hood shown here is actually smaller due to the thresholding. (d)
visualises the same thing in a discrete mode where each yellow
ball denotes the probability of a displacement which starts from
the marked vertex and points to the centre (also a mesh vertex)
of the yellow ball. Generally, the balls distant from the marked
vertex are very small, which means their corresponding vertices
barely have an effect on the marked vertex. Thus introducing a
precision threshold λ that completely eliminates the effect of ex-
tremely small non-zero probabilities has almost no impact on the
method but speeds it up since the thresholding makes the matrix
of stochastic mesh Laplacian more sparse. It can be seen that
the outcome of the combined effect of all yellow balls is a dis-
placement which moves the marked vertex to the bottom right as
the bottom right balls are generally larger than the top left ones.
Such a combined effect is essentially a weighted averaging in a
neighbourhood where the probabilities can be interpreted as the
weights assigned to the neighbours.

4. Experiments and applications

We run experiments for evaluating the proposed method using
various test meshes and record its time performance.

4.1. Comparisons with state-of-the-art methods
In this section, we compare our results to the ones produced by

other existing state-of-the-art methods mentioned in Section 2.
Because their implementations are usually unavailable, for direct
and fair comparisons, we implement our method on the same
meshes used in these papers.

Fig. 5 compares our result with the one produced by spectral
mesh processing [13]. Spectral mesh processing produces a rep-
resentation retaining the global structure of the shape while dis-
carding details. In contrast, while the multiscale representation
based on the stochastic mesh Laplacian also discards details, it
retains some important local features such as the head and the
feet of the horse, even at a large scale.

Figs. 6–8 compare our method with the diffusion-based
method [20], the wavelets-based method [27] and the point-based
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Figure 6: Two multiscale representations of the Stanford Bunny used in [20].
Top: the result of the diffusion-based method [20] with varying time parameters;
the leftmost figure shows the original mesh. Bottom: the result of our method
with k = 3, 9, 15 from left to right.

Figure 7: Two multiscale representations of the dinosaur mesh used in [27]. Top:
the result of the admissible diffusion wavelets [27] where k is the dyadic power
used to dilate the wavelet; Bottom: the result of our method.

method [32] respectively. These figures further demonstrate that
our method has an appealing property on the preservation of
points representing important features. As shown in Fig. 6, com-
pared to the diffusion-based method using the cotangent Lapla-
cian, our method based on the stochastic mesh Laplacian better
preserves the ear of the bunny and the geometrically important
grooves that disjoint its leg from the main body. The results
produced by the wavelets-based method shown in Fig. 7 appear
analogous to the ones produced by the spectral mesh process-
ing shown in Fig. 5 where at a sufficiently large scale, the mesh
representation suffers from a uniform contraction from shape ex-
tremities towards a certain point somewhere in the middle of the
mesh. In comparison, our method better preserves the shape ex-
tremities such as the forefeet of the dinosaur. Fig. 8 shows that
the point-based method is apparently equivalent to a repeated
smoothing operation throughout the surface. And this smooth-
ing seems not discriminative and thus not feature-preserving. In
comparison, important features such as the eyes of the squirrel
are still recognisable in our mesh representation at a large scale.

Figure 8: Two multiscale representations of the squirrel mesh used in [32]. Top
row: the result of the point-based method [32] where the leftmost figure shows
the original mesh; Bottom row: the result of our method where we used k =

3, 6, 12, 24 respectively from left to right.

Table 1: Time performance of our method where K denotes the total number of
the scales.

Meshes #Vertices K Time (sec)
Horse (Fig. 5) 7502 12 2.18
Bunny (Fig. 6) 35947 8 3.24

Dinosaur (Fig. 7) 14053 10 2.82
Squirrel (Fig. 8) 9995 10 1.65

Girl bust (Fig. 10) 15516 8 1.46
Angel (Fig. 10) 40000 6 2.18
Foot (Fig. 10) 10010 10 1.96

Max Planck (Fig. 10) 49132 6 1.64
Cow (Fig. 10) 11610 10 1.82

Camel (Fig. 10) 9757 6 0.25
Gargoyle (Fig. 12) 10002 6 0.38

Figs. 5 and 7 demonstrate that our method mitigates the shrink-
age effect of mesh compared with spectral mesh processing and
wavelets-based method. Shrinkage is a typical problem caused
by mesh smoothing methods. Our method is not free from
shrinkage, which can be observed by noticing the vertex dis-
placement shown in Fig. 4(b). However, we can recognise a
comparatively weak degree of shrinkage in Figs. 5–8. This is
because in our method, some mesh points which represent im-
portant features suffer from very small displacement while other
points move towards them. The feature points with small dis-
placement are usually corners and thus visually sustain the mesh
since the shrinkage at important features are usually more per-
ceptually significant to human visual system.

4.2. Efficiency

As analysed in Section 3.5, the proposed method is very effi-
cient. As shown in Figs. 5–8, it discards surface details rapidly
at small scales while much more slowly at large scales. Hence,
in practice, we can set K a relatively small number without sig-
nificant deterioration of the performance, which also saves com-
putational time by avoiding the multiplication of large matrices
with decreasing sparseness. The time performance of the pro-
posed method using a list of 3D meshes shown in this paper is
documented in Table. 1 where to compare our method with previ-
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Figure 9: Multiscale representations of meshes with different numbers of ver-
tices and triangulations. Left column: the test meshes; Middle column: multi-
scale mesh representations produced by the stochastic Laplacian where k denotes
the scale; Right column: the corresponding mesh saliency. (a) A horse mesh
containing 15K vertices; (b) A horse mesh containing 5K vertices generated by
the QSlim simplification [43]; (c) A horse mesh containing 5K vertices with a
different triangulation generated by a MeshLab’s built-in simplification method.

ous methods as fair as possible, all experiments used an old dual
core, 2.4GHz, 3.25GB RAM PC intentionally. Please compare
Table. 1 with Table.2 of [44], Table.1 of [1], Table.1 of [36] (the
column of Mutiscale descriptor) and Table.2 of [27]. In partic-
ular, by comparing our method with one state-of-the-art method
[27] where experiments were implemented under a hardware en-
vironment similar to ours, we can claim that our method is much
faster (by at least an order of magnitude). For example, in [27],
producing an 8-scale representation of the dinosaur mesh took
35.06 seconds while using our method on the same mesh to gen-
erate a 10-scale representation just took 2.82 seconds.

Interestingly in Table. 1, compared to the MaxPlanck mesh,
the Angel has a smaller number of vertices while taking longer
running time. The same phenomenon can also be found at the
Foot compared to the Cow. These phenomena demonstrate our
analysis in Section 3.5: the speed of our method depends on both
the number of vertices and their connectivity which are some-
times inconsistent (e.g, fewer vertices but more edges).

In general, our method is fast enough to afford rapid shape
analysis, which benefits a wide range of applications such as
mesh saliency, interest point detection, mesh simplification,
mesh segmentation, point sampling, etc. In this paper, we give
more details on the applications of mesh saliency and interest
point detection. In these applications, the total number of scales
K is set to 8 and the precision λ is set to 0.001.

4.3. Reliability

Fig. 9 demonstrates that the proposed multiscale mesh repre-
sentation is reasonably insensitive to the number of mesh vertices
and triangulation. It can be seen that the important local features

Algorithm 2: Saliency detection
Data: A mesh M represented by a vertex matrix P and a

face matrix T
Result: A saliency map I
begin

Compute the scale invariance function α;
Compute L̂ and then the stochastic Laplacian L and
input the number of scales K and a precision value λ;
F(1) = L;
for k ← 2 to K do

F(k) = F(k−1)L̂;
F =

[
F(k)

]
r
;

for i← 1 to m do
for j← 1 to m do

if F (i, j) < λ then
F (i, j) = 0

Fi = αiFi;
F(k) = [F]r;
D(k) =

∣∣∣F(k) − F(k−1)
∣∣∣;

Calculate the difference map as D(k) =
∑

rD
(k)

where
∑

r denotes the row-based summation;

I =
∑K

k=2 D(k);
I = log(I)

such as the head and the feet of the horse are always well pre-
served at various scales. Such reliability is desired since usually
the scale of a feature is not dependent on the number of vertices
or triangulation but mainly semantic. Consequently, as shown
in the right column of Fig. 9, the saliency (a perceptual measure
that we shall introduce in the next section) maps of the 3 meshes
are highly consistent.

4.4. Application 1: mesh saliency

Mesh saliency, first proposed in [1], is a measure of regional
importance in accordance with human perception. Various multi-
scale representation methods [1, 27, 36] have been employed for
computing mesh saliency. In these methods, saliency is captured
by calculating the differences between adjacent scales and then
aggregating them. We follow this scheme and propose an algo-
rithm shown in Algorithm 2 for saliency detection based on our
multiscale representation. In this algorithm, we calculate I as
the aggregation of the difference maps at all scales excluding the
first one in order to avoid being affected by noise perturbation.
We finally output the saliency map I by computing the logarithm
of I merely for a better visualisation effect. Some results using
a collection of meshes are shown in Fig. 10.

As summarised from previous papers [1, 27, 45, 46], facial
regions, especially the eyes, are typically salient. Also, shape ex-
tremities are often regarded as saliency by humans [45, 46]. Thus
for quadruped animals, the feet are usually salient. The results in
Fig. 10 demonstrate that the stochastic mesh Laplacian can be
effectively used for mesh saliency over a variety of objects.

Fig. 11 shows a comparison between our method based on the
stochastic mesh Laplacian and two popular alternatives where we
replace the stochastic mesh Laplaican with the uniform Lapla-
cian [34] and the cotangent Laplacian [20] respectively in Algo-
rithm 2 for computing mesh saliency. Our method detects some
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Figure 10: Saliency detection on meshes where warm colour indicates high saliency.

Figure 11: Results of saliency detection using uniform Laplacian [34], cotangent
Laplacian[20] and the proposed method respectively.

salient features such as the eyes, the horns and the mouth of the
cow while the alternatives fail to detect any meaningful local fea-
tures. It demonstrates that the proposed stochastic mesh Lapla-
cian is superior to both the uniform and the cotangent Laplacians
when applied in the detection of mesh saliency. This further val-
idates our claim made in Section 3.8 that the stochastic mesh
Laplacian is good at capturing local geometric features.

4.5. Application 2: Interest point detection

We also employ stochastic mesh Laplacian method for inter-
est point detection. Acquiring ground truth data for this task is
easier than saliency since people can just click on the points that
they are interested in on a 3D surface mesh. With such ground
truth data, we can implement quantitative evaluations and com-
parisons for competing methods.

Detection of interest points on a 3D surface itself is a funda-
mental problem in computer vision and graphics. Interest points
are often interpreted as local extrema of a scalar field of saliency,
with the help of multiscale mesh representation [2, 47, 48]. It can
be directly incorporated with the proposed algorithm for saliency
detection. More specifically, we first detect the saliency for a
mesh using Algorithm 2. Then, we find the maximum saliency
Imax and compute the standard deviation of saliency Istd. Imax is
normalised by Istd as I′max = Imax/Istd. Next, we detect the inter-
est points as the points with both high global interest and high

local interest. A mesh point is of interest if (i) its saliency is not
less than TglobalI′max where Tglobal is a threshold factor fixed to 0.4
in our experiments and (ii) its saliency is maximal over its 1-ring
neighbourhood.

We perform our method on the publicly available bench-
mark [49] and show some visual results in Figs. 12-14. This
benchmark also provides human-generated ground truth (interest
points manually selected by humans) and the results of 6 com-
paring methods, namely 3D-Harris [50], 3D-SIFT [48], HKS [4],
mesh saliency [1], salient points [2] and SD-corners [47]. With
these data and the 3 metrics false negative error (FNE), false pos-
itive error (FPE) and weighted miss error (WME) proposed in
[49], a quantitative comparison can be conducted.

Fig. 15 gives FNE, FPE and WME graphs with respect to lo-
calisation error tolerance r. A mesh point is considered to be
‘correctly detected’ as an interest point if its geodetic distance to
its closest ground truth interest point is not larger than r. Nor-
mally, as more points of interest are captured, more false posi-
tives are detected although that usually corresponds to a lower
FNE. And, if a method tends to mark fewer points of interest, it
results in a lower FPE, at the cost of a higher FNE. An algorithm
gets a low WME if it manages to detect a point that is frequently
voted for by human subjects. Thus it measures the ability of a
method to detect the most salient points. In contrast, FNE and
FPE treat all ground truth interest points equally. Therefore, an
ideal method should keep FNE, FPE and WME all low. From
Fig. 15 we can see that our method achieves the lowest FNE
and WME while SD-corners mostly achieves the second. For the
FPE, our method still has a good performance and in particular,
it mostly outperforms SD-corners.

4.6. Limitation

Visually, the multiscale representations produced by the
stochastic mesh Laplacian show local coplanarity at large scales,
leading to a ‘piecewisely planar’ effect. This is due to the ver-
tex displacement explained in detail in Section 3.8. Some ver-
tices representing local geometric features remain fixed in place
while some other vertices are subject to a large displacement to-
wards them and thus some large planar areas containing few ver-
tices occur. This may limit applications such as mesh compres-
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Figure 12: Points of interest detected on the gargoyle mesh by various approaches.

Figure 13: Points of interest detected on the camel mesh by various approaches.

sion [38, 39] and mesh smoothing [18, 40] where some alter-
natives such as the representation based on cotangent Laplacian
might work well as shown in [40].

5. Conclusions

We have developed a novel method for constructing multiscale
representation of meshed surfaces. The method is based on it-
eratively updating the matrix of the proposed stochastic mesh
Laplacian. Overall, the stochastic mesh Laplacian is constructed
in a bottom-up manner, which starts from the one correspond-
ing to the original mesh and expands as the scale increases. By
theoretically analysing the proposed method and relating it to
the competing methods, we have revealed its desired proper-
ties which potentially benefit a wide range of graphics applica-
tions. Through the experiments using a variety of test meshes, we
demonstrated the effectiveness and the efficiency of the proposed
method. It is much faster than solving the global eigen-system
and some wavelets-based techniques.

Compared with most existing methods for multiscale mesh
representation, our approach using the stochastic Laplacian is
potentially of broad interest in many graphics applications. Al-
though we only showcase two applications with special emphasis
on the detection of geometric features in this work, the proposed
approach could have a greater impact in the community. This
is because the nice properties of the method empower it to have
the unique characteristic of multiscale processing towards seek-
ing local features, while retaining gross shape/structure globally.
To further demonstrate the impact of our method, future research
endeavours will focus on investigating whether it can be used
in more applications, with special emphasis on surface filtering,
viewpoint selection and shape deformation.

Figure 14: Points of interest detected on the cow mesh by various approaches.
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