93 research outputs found

    Do political connections foster or hamper firm environmental investment?

    Get PDF
    Extant studies of environmental investment determinants have not distinguished between different types of political connections. This study tries to close this gap by employing an extensive dataset based on the four-yearly Chinese Private Enterprises Survey conducted between 2006 and 2012. The central question in this paper asks whether different political connections (ascribed vs. achieved) are fostering or hindering environmental protection expenditures in private enterprises. The results show that achieved political connections serve as binds of promoting firm environmental investment while ascribed political connections act as buffers, hampering firm environmental expenditures. The moderating roles of environmental regulation and innovation capability demonstrate heterogeneous effects: environmental regulation stringency strengthens the positive impact of achieved political connections only. In contrast, innovation capability enhances the negative impact of ascribed political connections

    From Indoor To Outdoor: Unsupervised Domain Adaptive Gait Recognition

    Full text link
    Gait recognition is an important AI task, which has been progressed rapidly with the development of deep learning. However, existing learning based gait recognition methods mainly focus on the single domain, especially the constrained laboratory environment. In this paper, we study a new problem of unsupervised domain adaptive gait recognition (UDA-GR), that learns a gait identifier with supervised labels from the indoor scenes (source domain), and is applied to the outdoor wild scenes (target domain). For this purpose, we develop an uncertainty estimation and regularization based UDA-GR method. Specifically, we investigate the characteristic of gaits in the indoor and outdoor scenes, for estimating the gait sample uncertainty, which is used in the unsupervised fine-tuning on the target domain to alleviate the noises of the pseudo labels. We also establish a new benchmark for the proposed problem, experimental results on which show the effectiveness of the proposed method. We will release the benchmark and source code in this work to the public

    A Benchmark of Video-Based Clothes-Changing Person Re-Identification

    Full text link
    Person re-identification (Re-ID) is a classical computer vision task and has achieved great progress so far. Recently, long-term Re-ID with clothes-changing has attracted increasing attention. However, existing methods mainly focus on image-based setting, where richer temporal information is overlooked. In this paper, we focus on the relatively new yet practical problem of clothes-changing video-based person re-identification (CCVReID), which is less studied. We systematically study this problem by simultaneously considering the challenge of the clothes inconsistency issue and the temporal information contained in the video sequence for the person Re-ID problem. Based on this, we develop a two-branch confidence-aware re-ranking framework for handling the CCVReID problem. The proposed framework integrates two branches that consider both the classical appearance features and cloth-free gait features through a confidence-guided re-ranking strategy. This method provides the baseline method for further studies. Also, we build two new benchmark datasets for CCVReID problem, including a large-scale synthetic video dataset and a real-world one, both containing human sequences with various clothing changes. We will release the benchmark and code in this work to the public

    Towards increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

    Get PDF
    This work was performed at the National High Magnetic Field Laboratory (NHMFL), which is supported by the National Science Foundation (DMR-1157490) and the State of Florida. L.S. acknowledges support from the National Institutes of Health (AI091693) and the NHMFL User Collaboration Grants Program (Award No. 5080). G.E.F. acknowledges support from the National Science Foundation (MCB-1329467) and the National Institutes of Health (GM105409 and S10RR031603). S.H. acknowledges support from the National Science Foundation (DMR-1309463). J.M.E acknowledges support from the National Science Foundation (DGE-0802270).High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W- (∼95 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.PostprintPeer reviewe

    New ionic dinuclear Ir(III) Schiff base complexes with aggregation-induced phosphorescent emission (AIPE)

    Get PDF
    Two new ionic dinuclear Ir(III) Schiff base complexes which are straightforward to synthesise have luminescence quantum yields as high as 37% in neat films. These are the first examples of dinuclear ionic Ir(III) complexes that display aggregation-induced phosphorescent emission (AIPE)

    HIV-1 Broadly Neutralizing Antibody Extracts Its Epitope from a Kinked gp41 Ectodomain Region on the Viral Membrane

    Get PDF
    SummaryAlthough rarely elicited during natural human infection, the most broadly neutralizing antibodies (BNAbs) against diverse human immunodeficiency virus (HIV)-1 strains target the membrane-proximal ectodomain region (MPER) of viral gp41. To gain insight into MPER antigenicity, immunogenicity, and viral function, we studied its structure in the lipid environment by a combination of nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and surface plasmon resonance (SPR) techniques. The analyses revealed a tilted N-terminal α helix (aa 664–672) connected via a short hinge to a flat C-terminal helical segment (675–683). This metastable L-shaped structure is immersed in viral membrane and, therefore, less accessible to immune attack. Nonetheless, the 4E10 BNAb extracts buried W672 and F673 after initial encounter with the surface-embedded MPER. The data suggest how BNAbs may perturb tryptophan residue-associated viral fusion involving the mobile N-terminal MPER segment and, given conservation of MPER sequences in HIV-1, HIV-2, and SIV, have important implications for structure-guided vaccine design

    The Chemistry of Phospholipid Binding by the Saccharomyces cerevisiae Phosphatidylinositol Transfer Protein Sec14p as Determined by EPR Spectroscopy

    Get PDF
    The major yeast phosphatidylinositol/phosphatidylcholine transfer protein Sec14p is the founding member of a large eukaryotic protein superfamily. Functional analyses indicate Sec14p integrates phospholipid metabolism with the membrane trafficking activity of yeast Golgi membranes. In this regard, the ability of Sec14p to rapidly exchange bound phospholipid with phospholipid monomers that reside in stable membrane bilayers is considered to be important for Sec14p function in cells. How Sec14p-like proteins bind phospholipids remains unclear. Herein, we describe the application of EPR spectroscopy to probe the local dynamics and the electrostatic microenvironment of phosphatidylcholine (PtdCho) bound by Sec14p in a soluble protein-PtdCho complex. We demonstrate that PtdCho movement within the Sec14p binding pocket is both anisotropic and highly restricted and that the C5 region of the sn-2 acyl chain of bound PtdCho is highly shielded from solvent, whereas the distal region of that same acyl chain is more accessible. Finally, high field EPR reports on a heterogeneous polarity profile experienced by a phospholipid bound to Sec14p. Taken together, the data suggest a headgroup-out orientation of Sec14p-bound PtdCho. The data further suggest that the Sec14p phospholipid binding pocket provides a polarity gradient that we propose is a primary thermodynamic factor that powers the ability of Sec14p to abstract a phospholipid from a membrane bilayer
    corecore