69 research outputs found

    Mining implicit design templates for actionable code reuse

    Get PDF
    National Research Foundation (NRF) Singapor

    Experimental and numerical studies on progressive debonding of grouted rock bolts

    Get PDF
    Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety. In this paper, both laboratory experiment and numerical simulation of the pull-out tests were performed. The experimental pull-out test specimens were prepared using cement mortar material, and a relationship between the pull-out strength of the bolt and the uniaxial compressive strength (UCS) of cement mortar material specimen was established. The locations of crack developed in the pull-out process were identified using the acoustic emission (AE) technique. The pull-out test was reproduced using 2D Particle Flow Code (PFC2D) with calibrated parameters. The experimental results show that the axial displacement of the cement mortar material at the peak load during the test was approximately 5 mm for cement-based grout of all strength. In contrast, the peak load of the bolt increased with the UCS of the confining medium. Under peak load, cracks propagated to less than one half of the anchorage length, indicating a lag between crack propagation and axial bolt load transmission. The simulation results show that the dilatation between the bolt and the rock induced cracks and extended the force field along the anchorage direction; and, it was identified as the major contributing factor for the pull-out failure of rock bolt

    New non-destructive method for testing the strength of cement mortar material based on vibration frequency of steel bar: Theory and experiment

    Get PDF
    Timely and accurately obtaining the strength of pouring material, e.g., concrete, cement mortar, is of great significance for engineering construction. In this paper, a non-destructive, economical and accurate strength detection method that suites for on-site using is proposed for the steel bar cement mortar material. The method based on the relationship between the vibration frequency of the steel bar and the properties of the mortar material, which is obtained by solving the Euler-Bernoulli beam problem. Both Particle Flow Code (PFC) software simulation (calibrated) and Split Hopkinson pressure Bar experiment on test samples of cement mortar and steel bar were performed to verify the theoretically obtained relationship. Studies on samples of various aggregate ratio further confirmed such correspondence. Results show that the dynamic stiffness of the cement mortar material dominates the calculation of the vibration frequency of steel bar, while the combined effect of the density, length, elastic modulus, inertia moment of the steel bar can be safely ignored. A single-valued mapping relation exists in between the dynamic stiffness coefficient and the Uniaxial Compressive Strength (UCS) of the cement mortar sample, i.e., increased dynamic stiffness coefficient with increasing UCS. Both experimental and predicted results showed a linear relationship between the vibration frequency of the steel bar and the strength of the mortar material. Fitted linear relations were proposed with coefficients depending on sample size and aggregate ratio and might serve as a good indicator for the strength of the mortar material. Further studies on the effect of internal defects of the mortar materials as well as on samples of more size and aggregate ratio are required to make the proposed method a practical too

    Wnt/GSK3β/β-catenin signaling pathway regulates calycosin-mediated anticancer effects in glioblastoma multiforme cells

    No full text
    Calycosin, an O-methylated isoflavone, has been widely reported to induce anticancer activity in different cancer cells in vitro. Nonetheless, the associated mechanism of calycosin in glioblastoma multiforme cells (U87) still remains unknown. To explore the anticancer effects, the apoptotic mechanism of calycosin via Wnt/GSK3β/β-catenin signaling was explored in U87 cells. Different assays including: cytotoxicity, free radical determination, SOD and CAT activity, GSH content, qPCR, mitochondrial membrane potential, caspase activity, and western blotting assays were performed. It was shown that calycosin mitigated cell viability in U87 cells, whereas it showed no apparent effect on BV2 microglial cells. Calycosin triggered apoptosis via upregulating the mitochondria-associated caspase pathway in U87 cells. Calycosin induced the reduction of the mitochondrial membrane potential, overexpression of Bax, downexpression of Bcl-2, and activation of caspase-9 and caspase-3. Calycosin-stimulated apoptosis was associated with the upregulation of free radical scavenging through the modulation of antioxidant enzymes, such as SOD and CAT as well as the level of GSH. The apoptotic activity of calycosin was mediated by suppression of pGSK-3βser9, β-catenin, and c-Myc at protein level. The present study suggested that calycosin triggers U87 cell death through an antioxidant effect mediated by Wnt/GSK3β/β-catenin signaling pathway

    Analysis of the cracking mechanisms in pre-cracked sandstone under radial compression by moment tensor analysis of acoustic emissions

    No full text
    Rock masses, especially those with different pre-existing cracks, are prone to instability and failure under tensile loading, resulting in different degrees of engineering disasters. Therefore, to better understand the effect of pre-existing cracks with different dip angles on the tensile instability failure behaviour of rocks, the mechanism of crack initiation, propagation and coalescence in precracked sandstone under radial compression loading is investigated through numerical simulations. The temporal and spatial evolution of acoustic emission (AE) events is investigated by the moment tensor (MT), and the fracture mode of micro-cracks is determined. The results show that the pre-existing cracks weaken the specimens. The strength, crack initiation points and macro-failure modes of the specimens differ significantly depending on the dip angle of the pre-existing crack. For different dip angles of the pre-existing cracks, all the micro-cracks at the crack initiation point are tensile cracks, which are dominant during the whole loading process, and mixed cracks are mainly generated near the upper and lower loading ends after the peak stress. Of the total number of events, more than 75% are tensile cracks; approximately 15% are shear mode cracks; and the remainder consist of mixed mode cracks. The study reveals the instability and failure mechanism of pre-cracked rock, which is of great significance to ensure the long-term stability of rock mass engineering

    Exosomes in Glioma: Unraveling Their Roles in Progression, Diagnosis, and Therapy

    No full text
    Gliomas, the most prevalent primary malignant brain tumors, present a challenging prognosis even after undergoing surgery, radiation, and chemotherapy. Exosomes, nano-sized extracellular vesicles secreted by various cells, play a pivotal role in glioma progression and contribute to resistance against chemotherapy and radiotherapy by facilitating the transportation of biological molecules and promoting intercellular communication within the tumor microenvironment. Moreover, exosomes exhibit the remarkable ability to traverse the blood–brain barrier, positioning them as potent carriers for therapeutic delivery. These attributes hold promise for enhancing glioma diagnosis, prognosis, and treatment. Recent years have witnessed significant advancements in exosome research within the realm of tumors. In this article, we primarily focus on elucidating the role of exosomes in glioma development, highlighting the latest breakthroughs in therapeutic and diagnostic approaches, and outlining prospective directions for future research
    corecore