7 research outputs found

    Microbially Induced Calcium Carbonate Plugging for Enhanced Oil Recovery

    No full text
    Plugging high-permeability zones within oil reservoirs is a straightforward approach to enhance oil recovery by diverting waterflooding fluids through the lower-permeability oil-saturated zones and thereby increase hydrocarbon displacement by improvements in sweep efficiency. Sporosarcina pasteurii (ATCC 11859) is a nitrogen-circulating bacterium capable of precipitating calcium carbonate given a calcium ion source and urea. This microbially induced carbonate precipitation (MICP) is able to infill the pore spaces of the porous medium and thus can act as a potential microbial plugging agent for enhancing sweep efficiency. The following explores the microscopic characteristics of MICP-plugging and its effectiveness in permeability reduction. We fabricate artificial rock cores composed of Ottawa sand with three separate grain-size fractions which represent large (40/60 mesh sand), intermediate (60/80 mesh sand), and small (80/120 mesh sand) pore sizes. The results indicate a significant reduction in permeability after only short periods of MICP treatment. Specifically, after eight cycles of microbial treatment (about four days), the permeability for the artificial cores representing large, intermediate, and small pore size maximally drop to 47%, 32%, and 16% of individual initial permeabilities. X-ray diffraction (XRD) indicates that most of the generated calcium carbonate crystals occur as vaterite with only a small amount of calcite. Imaging by SEM indicates that the pore wall is coated by a calcium carbonate film with crystals of vaterite and calcite scattered on the pore wall and acting to effectively plug the pore space. The distribution pattern and morphology of microbially mediated CaCO3 indicate that MICP has a higher efficiency in plugging pores compared with extracellular polymeric substances (EPSs) which are currently the primary microbial plugging agent used to enhance sweep efficiency

    Rock Fragmentation Characteristics by TBM Cutting and Efficiency under Bi-Lateral Confinement

    No full text
    In this study, the mechanisms of rock breakage are assessed using tunnel boring machine (TBM) disc cutters under bi-axial pressure. Sequential indentation tests were conducted on granite specimens using a tri-axial testing platform. The morphology and volume of the fractured surface were measured and analyzed using a three-dimensional surface profilometer. An analysis of rock breaking growth and efficiency was performed as well. When the minor confining pressure (σ1) is constant, the results show that a larger difference in confining pressure leads to a larger volume of fractured surface, thereafter improving the rock-breaking efficiency even though the penetration energy is enlarged. On the other hand, when the major confining pressure (σ2) is constant, the penetration energy increases proportionally with the σ1; however, the volume of fractured surface is decreased, and the breaking efficiency is attenuated as well

    Permeable rock matrix sealed with microbially-induced calcium carbonate precipitation : Evolutions of mechanical behaviors and associated microstructure

    No full text
    Microbially-induced calcium carbonate precipitation (MICP) is a promising grouting material for subsurface remediation due to its water-like viscosity and excellent penetration. Current studies of MICP-grouting for subsurface remediation of both rock fractures and highly-permeable rock matrix focus on the spatio-temporal distribution of precipitated bio-CaCO3 and the resulting reduction in permeability. Conversely, we focus on the improvement of mechanical response following MICP-grouting. We contrast the improved mechanical response of MICP-treated Berea sandstones with distinctly contrasting initial mechanical properties - contrasting associated pre- and post-treatment microstructures with various durations of MICP-grouting. Results indicate that although the precipitated CaCO3 mass with time within these two rock types is similar, significant differences exist in the evolution of mechanical properties (UCS, Young's modulus and brittleness). The evolution of mechanical properties for the low-strength sandstone (initial UCS 25.7 MPa) exhibits three contrasting phases: an initial slow increase, followed by a rapid-increase and then saturation and asympotic response. After ten cycles of MICP-grouting, UCS, elastic modulus and brittleness index for low-strength sandstone increase by 229%, 179% and 177% compared with before grouting. In contrast, the mechanical properties for the high-strength sandstone (initial UCS 65.1 MPa) are not significantly enhanced, increasing UCS by only 22%, 14% and 12%. Imaging by scanning electron microscopy (SEM) indicates that the cementing minerals fill the quartz framework for the high-strength sandstone but are sparse for the low-strength sandstone. Sandstone is a elastic sedimentary rock consisting of a framework of quartz grains bonded by cementing minerals. For the high-strength sandstone infused with a large mass of cementing minerals, the calcium carbonate crystals only precipitate in the gaps between the cementing minerals or adhere to the cementing minerals. This is only capable of relatively limited enhancement in the bio-bonding strength and volume of the quartz framework. For the low-strength sandstone with fewer cementing minerals, the precipitated calcium carbonate is evenly distributed on the surfaces of the quartz gains. The bulk strength is progressively increased with the ongoing bio-cementation between quartz gains. Cementing mineral contents not only exert a considerable control on the integral mechanical properties and penetration for the sandstone, but also have a direct influence on the microscopic distribution of bio-accumulated CaCO3, controlling the effectiveness of bio-cementation by incrementing the mechanical properties

    Multifunctional Textiles with Flame Retardant and Antibacterial Properties: A Review

    No full text
    It is well known that bacterial infections and fire-hazards are potentially injurious in daily life. With the increased security awareness of life and properties as well as the improvement of living standards, there has been an increasing demand for multifunctional textiles with flame retardant and antibacterial properties, especially in the fields of home furnishing and medical protection. So far, various treatment methods, including the spray method, the dip-coating method, and the pad-dry-cure method, have been used to apply functional finishing agents onto fabrics to achieve the functionalization in the past exploration stage. Moreover, in addition to the traditional finishing technology, a number of novel technologies have emerged, such as layer-by-layer (LBL) deposition, the sol-gel process, and chemical grafting modification. In addition, some natural biomasses, including chitin, chitosan (CS), and several synthetic functional compounds that possess both flame-retardant and bacteriostatic properties, have also received extensive attention. Hence, this review focuses on introducing some commonly used finishing technologies and flame retardant/antibacterial agents. At the same time, the advantages and disadvantages of different methods and materials were summarized, which will contribute to future research and promote the development and progress of the industry
    corecore