273 research outputs found

    On Relativistic Perturbations of Second and Higher Order

    Get PDF
    We present the results of a study of the gauge dependence of spacetime perturbations. In particular, we consider gauge invariance in general, we give a generating formula for gauge transformations to an arbitrary order n, and explicit transformation rules at second order.Comment: 6 pages, latex, with special style included, Proceedings of the 12th Italian Conference on General Relativity and Gravitational Physic

    Deriving relativistic momentum and energy. II. Three-dimensional case

    Full text link
    We generalise a recent derivation of the relativistic expressions for momentum and kinetic energy from the one-dimensional to the three-dimensional case.Comment: 7 page

    Optical geometry for gravitational collapse and Hawking radiation

    Full text link
    The notion of optical geometry, introduced more than twenty years ago as a formal tool in quantum field theory on a static background, has recently found several applications to the study of physical processes around compact objects. In this paper we define optical geometry for spherically symmetric gravitational collapse, with the purpose of extending the current formalism to physically interesting spacetimes which are not conformally static. The treatment is fully general but, as an example, we also discuss the special case of the Oppenheimer-Snyder model. The analysis of the late time behaviour shows a close correspondence between the structure of optical spacetime for gravitational collapse and that of flat spacetime with an accelerating boundary. Thus, optical geometry provides a natural physical interpretation for derivations of the Hawking effect based on the ``moving mirror analogy.'' Finally, we briefly discuss the issue of back-reaction in black hole evaporation and the information paradox from the perspective of optical geometry.Comment: 13 pages, 10 figures, aps, revtex, To be published in PR

    Trapped gravitational wave modes in stars with R>3M

    Full text link
    The possibility of trapped modes of gravitational waves appearing in stars with R>3M is considered. It is shown that the restriction to R<3M in previous studies of trapped modes, using uniform density models, is not essential. Scattering potentials are computed for another family of analytic stellar models showing the appearance of a deep potential well for one model with R>3M. However, the provided example is unstable, although it has a more realistic equation of state in the sense that the sound velocity is finite. On the other hand it is also shown that for some stable models belonging to the same family but having R<3M, the well is significantly deeper than that of the uniform density stars. Whether there are physically realistic equations of state which allow stable configurations with trapped modes therefore remains an open problem.Comment: 10 pages, 3 figures, LaTeX2

    Excited by a quantum field: Does shape matter?

    Get PDF
    The instantaneous transition rate of an arbitrarily accelerated Unruh-DeWitt particle detector on four-dimensional Minkowski space is ill defined without regularisation. We show that Schlicht's regularisation as the zero-size limit of a Lorentz-function spatial profile yields a manifestly well-defined transition rate with physically reasonable asymptotic properties. In the special case of stationary trajectories, including uniform acceleration, we recover the results that have been previously obtained by a regularisation that relies on the stationarity. Finally, we discuss evidence for the conjecture that the zero-size limit of the transition rate is independent of the detector profile.Comment: 7 pages, uses jpconf. Talk given at NEB XII (Nafplio, Greece, 29 June - 2 July 2006

    Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond

    Get PDF
    We consider in detail the problem of gauge dependence that exists in relativistic perturbation theory, going beyond the linear approximation and treating second and higher order perturbations. We first derive some mathematical results concerning the Taylor expansion of tensor fields under the action of one-parameter families (not necessarily groups) of diffeomorphisms. Second, we define gauge invariance to an arbitrary order nn. Finally, we give a generating formula for the gauge transformation to an arbitrary order and explicit rules to second and third order. This formalism can be used in any field of applied general relativity, such as cosmological and black hole perturbations, as well as in other spacetime theories. As a specific example, we consider here second order perturbations in cosmology, assuming a flat Robertson-Walker background, giving explicit second order transformations between the synchronous and the Poisson (generalized longitudinal) gauges.Comment: slightly revised version, accepted for publication in Classical and Quantum Gravity. 27 pages including 4 figures, latex using 2 CQG style files: ioplppt.sty, iopl10.st

    Towards nonlinear quantum Fokker-Planck equations

    Full text link
    It is demonstrated how the equilibrium semiclassical approach of Coffey et al. can be improved to describe more correctly the evolution. As a result a new semiclassical Klein-Kramers equation for the Wigner function is derived, which remains quantum for a free quantum Brownian particle as well. It is transformed to a semiclassical Smoluchowski equation, which leads to our semiclassical generalization of the classical Einstein law of Brownian motion derived before. A possibility is discussed how to extend these semiclassical equations to nonlinear quantum Fokker-Planck equations based on the Fisher information

    Recomendações técnicas para o cultivo da soja na região da Grande Dourados 1986/87.

    Get PDF
    Solos; Cultivares; Epoca de semeadura; Populacao, espacamento e densidade de semeadura; Controle de ervas daninhas; Controle de doencas; Manejo de pragas da soja; Colheita; Tratamento quimico de sementes; Ficha de levantamento de campo para manejo de pragas da soja; Como corrigir problemas.bitstream/item/66057/1/CPAO-CIR.-TEC.-13-86.pd

    Whole genome methylation profiles as independent markers of survival in stage IIIc melanoma patients

    Get PDF
    Background: The clinical course of cutaneous melanoma (CM) can differ significantly for patients with identical stages of disease, defined clinico-pathologically, and no molecular markers differentiate patients with such a diverse prognosis. This study aimed to define the prognostic value of whole genome DNA methylation profiles in stage III CM.Methods: Genome-wide methylation profiles were evaluated by the Illumina Human Methylation 27 BeadChip assay in short-term neoplastic cell cultures from 45 stage IIIC CM patients. Unsupervised K-means partitioning clustering was exploited to sort patients into 2 groups based on their methylation profiles. Methylation patterns related to the discovered groups were determined using the nearest shrunken centroid classification algorithm. The impact of genome-wide methylation patterns on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analyses.Results: Unsupervised K-means partitioning by whole genome methylation profiles identified classes with significantly different OS in stage IIIC CM patients. Patients with a " favorable" methylation profile had increased OS (P = 0.001, log-rank = 10.2) by Kaplan-Meier analysis. Median OS of stage IIIC patients with a " favorable" vs. " unfavorable" methylation profile were 31.5 and 10.4 months, respectively. The 5 year OS for stage IIIC patients with a " favorable" methylation profile was 41.2% as compared to 0% for patients with an " unfavorable" methylation profile. Among the variables examined by multivariate Cox regression analysis, classification defined by methylation profile was the only predictor of OS (Hazard Ratio = 2.41, for " unfavorable" methylation profile; 95% Confidence Interval: 1.02-5.70; P = 0.045). A 17 gene methylation signature able to correctly assign prognosis (overall error rate = 0) in stage IIIC patients on the basis of distinct methylation-defined groups was also identified.Conclusions: A discrete whole-genome methylation signature has been identified as molecular marker of prognosis for stage IIIC CM patients. Its use in daily practice is foreseeable, and promises to refine the comprehensive clinical management of stage III CM patients. © 2012 Sigalotti et al.; licensee BioMed Central Ltd
    • …
    corecore